Previous |  Up |  Next

Article

Title: On the Kirchhoff index of hypergraphs (English)
Author: Saha, Shib Sankar
Author: Panda, Swarup Kumar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 567-583
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {H}$ be a connected $k$-uniform hypergraph on $n$ vertices and $m$ hyperedges. K. Feng, W. Li (1996) introduced an adjacency matrix $\mathcal {A}(\mathcal {H})$ for hypergraphs. We consider the corresponding Laplacian matrix. We extend the concept of the Kirchhoff index to connected hypergraphs. We compute the Kirchhoff index for uniform complete, uniform complete bipartite, hypertriangle, and uniform Fano plane. A hypergraph is the Laplacian integral if the spectrum of its Laplacian matrix consists entirely of integers. In the process, three different classes of hypergraphs with Laplacian integral are provided. We show that the Kirchhoff index of any connected $k$-uniform hypergraph $\mathcal {H}$ is at least $(n-1)/\binom {n-2}{k-2}$ and the equality holds if and only if $\mathcal {H}$ is a $k$-uniform complete hypergraph. We also obtain some bounds for the Kirchhoff index in terms of hypergraph invariants such as the number of vertices, number of hyperedges, and first Zagreb index. (English)
Keyword: Laplacian matrix
Keyword: Kirchhoff index
Keyword: hypertriangle
Keyword: uniform Fano plane
Keyword: first Zagreb index
MSC: 05C65
MSC: 15A18
DOI: 10.21136/CMJ.2025.0308-24
.
Date available: 2025-05-20T11:47:16Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152958
.
Reference: [1] Alspach, B., Schellenberg, P. J., Stinson, D. R., Wagner, D.: The Oberwolfach problem and factors of uniform odd length cycles.J. Comb. Theory, Ser. A 52 (1989), 20-43. Zbl 0684.05035, MR 1008157, 10.1016/0097-3165(89)90059-9
Reference: [2] Bendito, E., Carmona, A., Encinas, A. M., Gesto, J. M., Mitjana, M.: Kirchhoff indexes of a network.Linear Algebra Appl. 432 (2010), 2278-2292. Zbl 1195.94100, MR 2599860, 10.1016/j.laa.2009.05.032
Reference: [3] Bretto, A.: Hypergraph Theory: An Introduction.Mathematical Engineering. Springer, Cham (2013). Zbl 1269.05082, MR 3077516, 10.1007/978-3-319-00080-0
Reference: [4] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, New York (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6
Reference: [5] Cardoso, K., Del-Vecchio, R., Portugal, L., Trevisan, V.: Adjacency energy of hypergraphs.Linear Algebra Appl. 648 (2022), 181-204. Zbl 1490.05156, MR 4419002, 10.1016/j.laa.2022.04.018
Reference: [6] Cardoso, K., Hoppen, C., Trevisan, V.: The spectrum of a class of uniform hypergraphs.Linear Algebra Appl. 590 (2020), 243-257. Zbl 1437.05169, MR 4051878, 10.1016/j.laa.2019.12.042
Reference: [7] Chung, F. R. K.: The Laplacian of a hypergraph.Expanding Graphs DIMACS Series in Discrete Mathematics and Theoretical Computer Science 10. AMS, Providence (1993), 21-36. Zbl 0790.05061, MR 1235565, 10.1090/dimacs/010
Reference: [8] Cooper, J., Dutle, A.: Spectra of uniform hypergraphs.Linear Algebra Appl. 436 (2012), 3268-3292. Zbl 1238.05183, MR 2900714, 10.1016/j.laa.2011.11.018
Reference: [9] Das, K. C., Gutman, I.: On Laplacian energy, Laplacian-energy-like invariant and Kirchhoff index of graphs.Linear Algebra Appl. 554 (2018), 170-184. Zbl 1392.05072, MR 3828814, 10.1016/j.laa.2018.05.030
Reference: [10] Das, K. C., Xu, K., Gutman, I.: Comparison between Kirchhoff index and the Laplacian-energy-like invariant.Linear Algebra Appl. 436 (2012), 3661-3671. Zbl 1241.05072, MR 2900743, 10.1016/j.laa.2012.01.002
Reference: [11] Deng, Q., Chen, H.: On the Kirchhoff index of the complement of a bipartite graph.Linear Algebra Appl. 439 (2013), 167-173. Zbl 1282.05074, MR 3045228, 10.1016/j.laa.2013.03.009
Reference: [12] Duan, C., Dam, E. R. van, Wang, L.: The characteristic polynomials of uniform double hyperstars and uniform hypertriangles.Linear Algebra Appl. 678 (2023), 16-32. Zbl 1525.05092, MR 4637262, 10.1016/j.laa.2023.08.011
Reference: [13] Feng, K., Li, W.-C. W.: Spectra of hypergraphs and applications.J. Number Theory 60 (1996), 1-22. Zbl 0874.05041, MR 1405722, 10.1006/jnth.1996.0109
Reference: [14] Friedman, J., Wigderson, A.: On the second eigenvalue of hypergraphs.Combinatorica 15 (1995), 43-65. Zbl 0843.05075, MR 1325271, 10.1007/BF01294459
Reference: [15] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290, 10.1017/CBO9780511810817
Reference: [16] Khan, M.-ul-I., Fan, Y.-Z.: On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs.Linear Algebra Appl. 480 (2015), 93-106. Zbl 1320.05076, MR 3348514, 10.1016/j.laa.2015.04.005
Reference: [17] Klein, D. J., Randić, M.: Resistance distance.J. Math. Chem. 12 (1993), 81-95. MR 1219566, 10.1007/BF01164627
Reference: [18] Rodríguez, J.: On the Laplacian eigenvalues and metric parameters of hypergraphs.Linear Multilinear Algebra 50 (2002), 1-14. Zbl 1008.05102, MR 1890984, 10.1080/03081080290011692
Reference: [19] Saha, S. S., Sharma, K., Panda, S. K.: On the Laplacian spectrum of $k$-uniform hypergraphs.Linear Algebra Appl. 655 (2022), 1-27. Zbl 1500.05039, MR 4484845, 10.1016/j.laa.2022.09.004
Reference: [20] Voloshin, V. I.: Introduction to Graph and Hypergraph Theory.Nova Science, New York (2009). Zbl 1209.05002, MR 2514872
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo