Previous |  Up |  Next

Article

Title: Some remarks on plectic motivic spaces and spectra (English)
Author: Hu, Po
Author: Kriz, Daniel
Author: Kriz, Igor
Author: Somberg, Petr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 585-598
Summary lang: English
.
Category: math
.
Summary: We formulate a motivic homotopy theory version of the plectic conjecture of J. Nekovář and A. J. Scholl and give some initial discussion of it. (English)
Keyword: plectic structure
Keyword: motivic homotopy theory
Keyword: norm map
Keyword: Shimura variety
MSC: 14F42
MSC: 14G35
DOI: 10.21136/CMJ.2025.0328-24
.
Date available: 2025-05-20T11:47:48Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152959
.
Reference: [1] Bachmann, T., Hoyois, M.: Norms in Motivic Homotopy Theory.Astérisque 425. Société Mathématique de France, Paris (2021). Zbl 1522.14028, MR 4288071, 10.24033/ast.1147
Reference: [2] Davidescu, C., Scholl, A. J.: Extensions in the cohomology of Hilbert modular varieties.Münster J. Math. 13 (2020), 509-518. Zbl 1469.11193, MR 4130690, 10.17879/90169645603
Reference: [3] Deligne, P.: Théorie de Hodge II.Publ. Math., Inst. Hautes Étud. Sci. 40 (1971), 5-57 French. Zbl 0219.14007, MR 0498551, 10.1007/BF02684692
Reference: [4] Deligne, P.: Travaux de Shimura.Séminaire N. Bourbaki Lecture Notes in Mathematics 244. Springer, Berlin (1971), 123-165 French. Zbl 0225.14007, MR 0498581, 10.1007/BFb0058700
Reference: [5] Faltings, G.: Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten.Arbeitstagung Bonn 1984 Lecture Notes in Mathematics 1111. Springer, Berlin (1985), 321-383 German. Zbl 0597.14036, MR 0797429, 10.1007/BFb0084598
Reference: [6] Harder, G.: On the cohomology of $SL(2,O)$.Lie Groups and Their Representations Halsted Press, New York (1975), 139-150. Zbl 0395.57028, MR 0425019
Reference: [7] Hu, P.: Base change functors in the $\Bbb{A}^1$-stable homotopy category.Homology Homotopy Appl. 3 (2001), 417-451. Zbl 1012.55017, MR 1856035, 10.4310/HHA.2001.v3.n2.a8
Reference: [8] Jardine, J. F.: Simplicial presheaves.J. Pure. Appl. Algebra 47 (1987), 35-87. Zbl 0624.18007, MR 0906403, 10.1016/0022-4049(87)90100-9
Reference: [9] Jardine, J. F.: Motivic symmetric spectra.Doc. Math. 5 (2000), 445-553. Zbl 0969.19004, MR 1787949, 10.4171/DM/86
Reference: [10] Morel, F., Voevodsky, V.: $\Bbb{A}^1$-homotopy theory of schemes.Publ. Math., Inst. Hautes Étud. Sci. 90 (1999), 45-143. Zbl 0983.14007, MR 1813224, 10.1007/BF02698831
Reference: [11] Mumford, D.: Geometric Invariant Theory.Ergebnisse der Mathematik und ihrer Grenzgebiete 34. Springer, Berlin (1965). Zbl 0147.39304, MR 0214602
Reference: [12] Nekovář, J., Scholl, A. J.: Introduction to plectic cohomology.Advances in the Theory of Automorphic Forms and Their $L$-Functions Contemporary Mathematics 664. AMS, Providence (2016), 321-337. Zbl 1402.11092, MR 3502988, 10.1090/conm/664
Reference: [13] Nekovář, J., Scholl, A. J.: Plectic Hodge theory I.Available at \brokenlink{http://dx.doi.org/{10.17863/CAM.39172}} (2017). 10.17863/CAM.39172
Reference: [14] Rapoport, M.: Compactifications de l'espace de modules de Hilbert-Blumenthal.Compos. Math. 36 (1978), 255-335 French. Zbl 0386.14006, MR 0515050
Reference: [15] Geer, G. van der: Hilbert Modular Surfaces.Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 16. Springer, Berlin (1988). Zbl 0634.14022, MR 0930101, 10.1007/978-3-642-61553-5
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo