Previous |  Up |  Next

Article

Title: Weighted Calderón-Hardy spaces (English)
Author: Rocha, Pablo
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 2
Year: 2025
Pages: 187-205
Summary lang: English
.
Category: math
.
Summary: We present the weighted Calderón-Hardy spaces on Euclidean spaces and investigate their properties. As an application we show, for certain power weights, that the iterated Laplace operator is a bijection from these spaces onto classical weighted Hardy spaces. The main tools to achieve our result are an atomic decomposition of weighted Hardy spaces furnished by the author, fundamental solutions of iterated Laplacian and pointwise inequalities for certain maximal functions. (English)
Keyword: weighted Calderón-Hardy space
Keyword: weighted Hardy space
Keyword: atomic decomposition
Keyword: Laplace operator
MSC: 42B25
MSC: 42B30
DOI: 10.21136/MB.2024.0090-23
.
Date available: 2025-05-20T11:54:46Z
Last updated: 2025-05-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152971
.
Reference: [1] Auscher, P., Egert, M.: Hardy spaces for boundary value problems of elliptic systems with block structure.J. Geom. Anal. 31 (2021), 9182-9198. Zbl 1473.35155, MR 4302218, 10.1007/s12220-021-00608-1
Reference: [2] Auscher, P., Egert, M.: Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure.Progress in Mathematics 346. Birkhäuser, Cham (2023). Zbl 07730807, MR 4628043, 10.1007/978-3-031-29973-5
Reference: [3] Calderón, A. P.: Estimates for singular integral operators in terms of maximal functions.Stud. Math. 44 (1972), 563-582. Zbl 0222.44007, MR 348555, 10.4064/sm-44-6-563-582
Reference: [4] Coifman, R. R.: A real variable characterization of $H^p$.Stud. Math. 51 (1974), 269-274. Zbl 0289.46037, MR 358318, 10.4064/sm-51-3-269-274
Reference: [5] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3
Reference: [6] Cruz-Uribe, D. V., Martell, J. M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia.Operator Theory: Advances and Applications 215. Birkhäuser, Basel (2011). Zbl 1234.46003, MR 2797562, 10.1007/978-3-0348-0072-3
Reference: [7] Cruz-Uribe, D. V., Wang, D.: Variable Hardy spaces.Indiana Univ. Math. J. 63 (2014), 447-493. Zbl 1311.42053, MR 3233216, 10.1512/iumj.2014.63.5232
Reference: [8] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [9] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137-193. Zbl 0257.46078, MR 447953, 10.1007/BF02392215
Reference: [10] García-Cuerva, J.: Weighted $H^p$ spaces.Diss. Math. 162 (1979), 1-63. Zbl 0434.42023, MR 549091
Reference: [11] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116. North-Holland, Amsterdam (1985). Zbl 0578.46046, MR 807149, 10.1016/s0304-0208(08)x7154-3
Reference: [12] Gatto, A. B., Segovia, C., Jiménez,, J. G.: On the solution of the equation $\Delta^{m}F = f$ for $f \in H^p$.Conference on Harmonic Analysis in honor of Antoni Zygmund, Volume II Wadsworth International Group, Belmont (1983). Zbl 0504.35040, MR 0730081
Reference: [13] Gel'fand, I. M., Shilov, G. E.: Generalized Functions. Volume 1. Properties and Operations.Academic Press, New York (1964). Zbl 0115.33101, MR 0166596
Reference: [14] Grafakos, L.: Classical Fourier Analysis.Graduate Texts in Mathematics 249. Springer, New York (2014). Zbl 1304.42001, MR 3243734, 10.1007/978-1-4939-1194-3
Reference: [15] Grafakos, L.: Modern Fourier Analysis.Graduate Texts in Mathematics 250. Springer, New York (2014). Zbl 1304.42002, MR 3243741, 10.1007/978-1-4939-1230-8
Reference: [16] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493
Reference: [17] Latter, R. H.: A characterization of $H^{p}(\Bbb{R}^{n})$ in terms of atoms.Stud. Math. 62 (1978), 93-101. Zbl 0398.42017, MR 482111, 10.4064/sm-62-1-93-101
Reference: [18] Lu, S.: Four Lectures on Real $H^p$ Spaces.World Scientific, Singapore (1995). Zbl 0839.42005, MR 1342077, 10.1142/2650
Reference: [19] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Am. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [20] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces.J. Funct. Anal. 262 (2012), 3665-3748. Zbl 1244.42012, MR 2899976, 10.1016/j.jfa.2012.01.004
Reference: [21] Ombrosi, S.: On spaces associated with primitives of distributions in one-sided Hardy spaces.Rev. Unión Mat. Argent. 42 (2001), 81-102. Zbl 1196.42023, MR 1969626
Reference: [22] Ombrosi, S., Perini, A., Testoni, R.: An interpolation theorem between Calderón-Hardy spaces.Rev. Unión Mat. Argent. 58 (2017), 1-19. Zbl 1369.42013, MR 3665895
Reference: [23] Ombrosi, S., Segovia, C.: One-sided singular integral operators on Calderón-Hardy spaces.Rev. Unión Mat. Argent. 44 (2003), 17-32. Zbl 1078.42008, MR 2051035
Reference: [24] Orlicz, W.: Über konjugierte Exponentenfolgen.Stud. Math. 3 (1931), 200-211 German. Zbl 0003.25203, 10.4064/sm-3-1-200-211
Reference: [25] Perini, A.: Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces.Commentat. Math. Univ. Carol. 52 (2011), 57-75. Zbl 1240.42061, MR 2828370
Reference: [26] Rocha, P.: Calderón-Hardy spaces with variable exponents and the solution of the equation $\Delta^{m}F=f$ for $f \in H^{p(\cdot)}(\Bbb{R}^n)$.Math. Inequal. Appl. 19 (2016), 1013-1030. Zbl 1350.42040, MR 3535220, 10.7153/mia-19-75
Reference: [27] Rocha, P.: On the atomic and molecular decomposition of weighted Hardy spaces.Rev. Unión Mat. Argent. 61 (2020), 229-247. Zbl 1467.42034, MR 4198908, 10.33044/revuma.v61n2a03
Reference: [28] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095, 10.1515/9781400883882
Reference: [29] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton Mathematical Series 43. Princeton University Press, Princeton (1993). Zbl 0821.42001, MR 1232192, 10.1515/9781400883929
Reference: [30] Stein, E. M., Weiss, G.: On the theory of harmonic functions of several variables I. The theory of $H^p$ spaces.Acta Math. 103 (1960), 25-62. Zbl 0097.28501, MR 121579, 10.1007/BF02546524
Reference: [31] Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces.Lecture Notes in Mathematics 1381. Springer, Berlin (1989). Zbl 0676.42021, MR 1011673, 10.1007/BFb0091154
Reference: [32] Taibleson, M. H., Weiss, G.: The molecular characterization of certain Hardy spaces.Astérisque 77 (1980), 67-149. Zbl 0472.46041, MR 604370
Reference: [33] Uchiyama, A.: Hardy Spaces on the Euclidean Space.Springer Monographs in Mathematics. Springer, Berlin (2001). Zbl 0984.42015, MR 1845883, 10.1007/978-4-431-67905-9
.

Files

Files Size Format View
MathBohem_150-2025-2_2.pdf 315.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo