Previous |  Up |  Next

Article

Title: Boundedness and Hölder continuity of weak solutions of the nonlinear boundary-value problem for elliptic equations with general nonstandard growth conditions (English)
Author: Ri, Gumpyong
Author: Ri, Dukman
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 2
Year: 2025
Pages: 161-185
Summary lang: English
.
Category: math
.
Summary: We study a nonlinear boundary-value problem for elliptic equations with critical growth conditions involving Lebesgue measurable functions. We prove global boundedness and Hölder continuity of weak solutions for this problem. Our results generalize the ones obtained by P. Winkert and his colleagues (2012) not only in the variable exponent case but also in the constant exponent case. (English)
Keyword: nonstandard growth
Keyword: nonlinear boundary condition
Keyword: Hölder continuity
Keyword: boundedness
MSC: 35B65
MSC: 35D30
MSC: 35J66
MSC: 76A05
DOI: 10.21136/MB.2024.0166-23
.
Date available: 2025-05-20T11:54:09Z
Last updated: 2025-05-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152969
.
Reference: [1] Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth.Arch. Ration. Mech. Anal. 156 (2001), 121-140. Zbl 0984.49020, MR 1814973, 10.1007/s002050100117
Reference: [2] Adamowicz, T., Toivanen, O.: Hölder continuity of quasiminimizers with nonstandard growth.Nonlinear Anal., Theory Methods Appl., Ser. A 125 (2015), 433-456. Zbl 1322.49059, MR 3373594, 10.1016/j.na.2015.05.023
Reference: [3] Antontsev, S. N., Rodrigues, J. F.: On stationary thermo-rheological viscous flows.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. Zbl 1117.76004, MR 2246902, 10.1007/s11565-006-0002-9
Reference: [4] Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals.Nonlinear Anal., Theory Methods Appl., Ser. A 121 (2015), 206-222. Zbl 1321.49059, MR 3348922, 10.1016/j.na.2014.11.001
Reference: [5] Borsuk, M.: $L^{\infty}$-estimate for the Robin problem of a singular variable $p$-Laplacian equation in a conical domain.Electron. J. Differ. Equ. 2018 (2018), Article ID 49, 9 pages. Zbl 1386.35122, MR 3781164
Reference: [6] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration.SIAM J. Appl. Math. 66 (2006), 1383-1406. Zbl 1102.49010, MR 2246061, 10.1137/050624522
Reference: [7] DiBenedetto, E.: Partial Differential Equations.Cornerstones. Birkhäuser, Boston (2010). Zbl 1188.35001, MR 2566733, 10.1007/978-0-8176-4552-6
Reference: [8] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Heidelberg (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [9] Eleuteri, M., Harjulehto, P., Lukkari, T.: Global regularity and stability of solutions to elliptic equations with nonstandard growth.Complex Var. Elliptic Equ. 56 (2011), 599-622. Zbl 1232.35030, MR 2832205, 10.1080/17476930903568399
Reference: [10] Fan, X.: Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form.J. Differ. Equations 235 (2007), 397-417. Zbl 1143.35040, MR 2317489, 10.1016/j.jde.2007.01.008
Reference: [11] Fan, X.: Boundary trace embedding theorems for variable exponent Sobolev spaces.J. Math. Anal. Appl 339 (2008), 1395-1412. Zbl 1136.46025, MR 2377096, 10.1016/j.jmaa.2007.08.003
Reference: [12] Fan, X.: Local boundedness of quasi-minimizers of integral functionals with variable exponent anisotropic growth and applications.NoDEA, Nonlinear Differ. Equ. Appl. 17 (2010), 619-637. Zbl 1198.49033, MR 2728541, 10.1007/s00030-010-0072-3
Reference: [13] Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of $p(x)$-Laplacian Dirichlet problem.J. Math. Anal. Appl. 302 (2005), 306-317. Zbl 1072.35138, MR 2107835, 10.1016/j.jmaa.2003.11.020
Reference: [14] Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity.Nonlinear Anal., Theory Methods Appl. 36 (1999), 295-318. Zbl 0927.46022, MR 1688232, 10.1016/S0362-546X(97)00628-7
Reference: [15] Fan, X., Zhao, D.: The quasi-minimizer of integral functionals with $m(x)$ growth conditions.Nonlinear Anal., Theory Methods Appl., Ser. A 39 (2000), 807-816. Zbl 0943.49029, MR 1736389, 10.1016/S0362-546X(98)00239-9
Reference: [16] Gasiński, L., Papageorgiou, N. S.: Anisotropic nonlinear Neumann problems.Calc. Var. Partial Differ. Equ. 42 (2011), 323-354. Zbl 1271.35011, MR 2846259, 10.1007/s00526-011-0390-2
Reference: [17] Gordadze, E., Meskhi, A., Ragusa, M. A.: On some extrapolation in generalized grand Morrey spaces and applications to partial differential equations.Trans. A. Razmadze Math. Inst. 176 (2022), 435-441. Zbl 1522.42052, MR 4524235
Reference: [18] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth.Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. Zbl 1188.35072, MR 2639204, 10.1016/j.na.2010.02.033
Reference: [19] Ho, K., Winkert, P.: New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems.Available at https://arxiv.org/abs/2208.00504 (2022), 32 pages. MR 4640319, 10.48550/arXiv.2208.00504
Reference: [20] Kim, S., Ri, D.: Global boundedness and Hölder continuity of quasiminimizers with the general nonstandard growth conditions.Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 170-192. Zbl 1419.49045, MR 3926581, 10.1016/j.na.2019.02.016
Reference: [21] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493
Reference: [22] Ladyzhenskaya, O. A., Ural'tseva, N. N.: Linear and Quasilinear Elliptic Equations.Mathematics in Science and Engineering 46. Academic Press, New York (1968). Zbl 0164.13002, MR 0244627
Reference: [23] Lukkari, T.: Boundary continuity of solutions to elliptic equations with nonstandard growth.Manuscr. Math. 132 (2010), 463-482. Zbl 1193.35050, MR 2652442, 10.1007/s00229-010-0355-3
Reference: [24] Marino, G., Winkert, P.: Moser iteration applied to elliptic equations with critical growth on the boundary.Nonlinear Anal., Theory Methods Appl., Ser. A 180 (2019), 154-169. Zbl 1426.35122, MR 3872795, 10.1016/j.na.2018.10.002
Reference: [25] Marino, G., Winkert, P.: Global a priori bounds for weak solutions of quasilinear elliptic systems with nonlinear boundary condition.J. Math. Anal. Appl. 482 (2020), Article ID 123555, 19 pages. Zbl 1435.35163, MR 4015691, 10.1016/j.jmaa.2019.123555
Reference: [26] Mihăilescu, M., Rădulescu, V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent.Proc. Am. Math. Soc. 135 (2007), 2929-2937. Zbl 1146.35067, MR 2317971, 10.1090/S0002-9939-07-08815-6
Reference: [27] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748. Springer, Berlin (2000). Zbl 0962.76001, MR 1810360, 10.1007/BFb0104029
Reference: [28] Winkert, P., Zacher, R.: A priori bounds for weak solutions to elliptic equations with nonstandard growth.Discrete Contin. Dyn. Syst., Ser. S 5 (2012), 865-878. Zbl 1261.35061, MR 2851207, 10.3934/dcdss.2012.5.865
Reference: [29] Yu, C., Ri, D.: Global $L^{\infty}$-estimates and Hölder continuity of weak solutions to elliptic equations with the general nonstandard growth conditions.Nonlinear Anal., Theory Methods Appl., Ser. A 156 (2017), 144-166. Zbl 1375.35127, MR 3634773, 10.1016/j.na.2017.02.019
Reference: [30] Zhang, H.: A global regularity result for the 2D generalized magneto-micropolar equations.J. Funct. Spaces 2022 (2022), Article ID 1501851, 6 pages. Zbl 1485.35097, MR 4389530, 10.1155/2022/1501851
Reference: [31] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory.Math. USSR, Izv. 29 (1987), 33-66. Zbl 0599.49031, MR 0864171, 10.1070/im1987v029n01abeh000958
.

Files

Files Size Format View
MathBohem_150-2025-2_1.pdf 349.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo