Previous |  Up |  Next

Article

Title: Local well-posedness of solutions to 2D magnetic Prandtl model in the Prandtl-Hartmann regime (English)
Author: Qin, Yuming
Author: Wang, Xiuqing
Author: Liu, Junchen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 2
Year: 2025
Pages: 169-202
Summary lang: English
.
Category: math
.
Summary: We consider the 2D magnetic Prandtl equation in the Prandtl-Hartmann regime in a periodic domain and prove the local existence and uniqueness of solutions by energy methods in a polynomial weighted Sobolev space. On the one hand, we have noted that the $x$-derivative of the pressure $P$ plays a key role in all known results on the existence and uniqueness of solutions to the Prandtl-Hartmann regime equations, in which the case of favorable $P$ $(\partial _x P<0)$ or the case of $\partial _x P=0$ (led by constant outer flow $U={\rm constant}$) was only considered. While in this paper, we have no restriction on the sign of $\partial _x P$, which has generalized all previous results and definitely gives rise to a difficulty in mathematical treatments. To overcome this difficulty, we shall use the skill of cancellation mechanism which is valid under the monotonicity assumption. One the other hand, we consider the general outer flow $U\neq {\rm constant}$, leading to the boundary data at $y=0$ being much more complicated. To deal with these boundary data, some more delicate estimates and mathematical induction method will be used. Therefore, our result also provides an extension of earlier studies by addressing the challenges arising from general outer flow. (English)
Keyword: Prandtl-Hartmann
Keyword: boundary layer
Keyword: local well-posedness
MSC: 35M13
MSC: 35Q35
MSC: 53C35
MSC: 76N10
MSC: 76N15
DOI: 10.21136/AM.2025.0062-24
.
Date available: 2025-05-26T12:14:55Z
Last updated: 2025-06-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152979
.
Reference: [1] Alexandre, R., Wang, Y.-G., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces.J. Am. Math. Soc. 28 (2015), 745-784. Zbl 1317.35186, MR 3327535, 10.1090/S0894-0347-2014-00813-4
Reference: [2] Caflisch, R. E., Sammartino, M.: Existence and singularities for the Prandtl boundary layer equations.ZAMM, Z. Angew. Math. Mech. 80 (2000), 733-744. Zbl 1050.76016, MR 1801538, 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L
Reference: [3] Cannone, M., Lombardo, M. C., Sammartino, M.: Existence and uniqueness for the Prandtl equations.C. R. Acad. Sci., Paris, Sér. I, Math. 332 (2001), 277-282. Zbl 0984.35002, MR 1817376, 10.1016/S0764-4442(00)01798-5
Reference: [4] Chen, D., Ren, S., Wang, Y., Zhang, Z.: Global well-posedness of the 2-D magnetic Prandtl model in the Prandtl-Hartmann regime.Asymptotic Anal. 120 (2020), 373-393. Zbl 1472.35288, MR 4169212, 10.3233/ASY-191593
Reference: [5] Chen, D., Wang, Y., Zhang, Z.: Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35 (2018), 1119-1142. Zbl 1392.35220, MR 3795028, 10.1016/J.ANIHPC.2017.11.001
Reference: [6] Chen, D., Wang, Y., Zhang, Z.: Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces.J. Differ. Equations 264 (2018), 5870-5893. Zbl 1402.35218, MR 3765768, 10.1016/j.jde.2018.01.024
Reference: [7] Cope, W. F., Hartree, D. R.: The laminar boundary layer in compressible flow.Philos. Trans. Roy. Soc. London, Ser. A 241 (1948), 1-69. Zbl 0066.20003, MR 0025857, 10.1098/rsta.1948.0008
Reference: [8] Dong, X., Qin, Y.: Global well-posedness of solutions to 2D Prandtl-Hartmann equations in analytic framework.J. Partial Differ. Equations 35 (2022), 289-306. Zbl 1513.76125, MR 4449831, 10.4208/jpde.v35.n3.7
Reference: [9] Fan, L., Ruan, L., Yang, A.: Local well-posedness of solutions to the boundary layer equations for 2D compressible flow.J. Math. Anal. Appl. 493 (2021), Article ID 124565, 25 pages. Zbl 1453.76195, MR 4145619, 10.1016/j.jmaa.2020.124565
Reference: [10] Gao, J., Huang, D., Yao, Z.: Boundary layer problems for the two-dimensional inhomogeneous incompressible magnetohydrodynamics equations.Calc. Var. Partial Differ. Equ. 60 (2021), Article ID 67, 61 pages. Zbl 1461.76552, MR 4239821, 10.1007/s00526-021-01958-y
Reference: [11] Gao, J., Li, M., Yao, Z.: Higher regularity and asymptotic behavior of 2D magnetic Prandtl model in the Prandtl-Hartmann regime.J. Differ. Equations 386 (2024), 294-367. Zbl 1533.35272, MR 4687368, 10.1016/j.jde.2023.12.030
Reference: [12] Gargano, F., Sammartino, M., Sciacca, V.: Singularity formation for Prandtl's equations.Physica D 238 (2009), 1975-1991. Zbl 1191.76039, MR 2582626, 10.1016/j.physd.2009.07.007
Reference: [13] Gérard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity.Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), 1273-1325. Zbl 1347.35201, MR 3429469, 10.24033/asens.2270
Reference: [14] Gérard-Varet, D., Prestipino, M.: Formal derivation and stability analysis of boundary layer models in MHD.Z. Angew. Math. Phys. 68 (2017), Article ID 76, 16 pages. Zbl 1432.76285, MR 3657241, 10.1007/s00033-017-0820-x
Reference: [15] Gong, S., Guo, Y., Wang, Y.-G.: Boundary layer problems for the two-dimensional compressible Navier-Stokes equations.Anal. Appl., Singap. 14 (2016), 1-37. Zbl 1333.35194, MR 3438645, 10.1142/S0219530515400011
Reference: [16] Gong, S., Wang, X.: On a global weak solution and back flow of the mixed Prandtl-Hartmann boundary layer problem.J. Math. Fluid Mech. 23 (2021), Article ID 11, 16 pages. Zbl 1455.76206, MR 4179899, 10.1007/s00021-020-00530-6
Reference: [17] Huang, Y., Liu, C.-J., Yang, T.: Local-in-time well-posedness for compressible MHD boundary layer.J. Differ. Equations 266 (2019), 2978-3013. Zbl 1456.35162, MR 3912675, 10.1016/j.jde.2018.08.052
Reference: [18] Li, W.-X., Xu, R., Yang, T.: Global well-posedness of a Prandtl model from MHD in Gevrey function spaces.Acta Math. Sci., Ser. B, Engl. Ed. 42 (2022), 2343-2366. Zbl 1513.76172, MR 4494626, 10.1007/s10473-022-0609-7
Reference: [19] Liu, C.-J., Wang, D., Xie, F., Yang, T.: Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces.J. Funct. Anal. 279 (2020), Article ID 108637, 44 pages. Zbl 1445.76097, MR 4102162, 10.1016/j.jfa.2020.108637
Reference: [20] Liu, C.-J., Xie, F., Yang, T.: Justification of Prandtl ansatz for MHD boundary layer.SIAM J. Math. Anal. 51 (2019), 2748-2791. Zbl 1419.76555, MR 3975147, 10.1137/18M1219618
Reference: [21] Liu, C.-J., Xie, F., Yang, T.: MHD boundary layers in Sobolev spaces without monotonicity. I. Well-posedness theory.Commun. Pure Appl. Math. 72 (2021), 63-121. Zbl 1404.35492, MR 3882222, 10.1002/cpa.21763
Reference: [22] Masmoudi, N., Wong, T. K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods.Commun. Pure Appl. Math. 68 (2015), 1683-1741. Zbl 1326.35279, MR 3385340, 10.1002/cpa.21595
Reference: [23] Oleinik, O. A., Samokhin, V. N.: Mathematical Models in Boundary Layer Theory.Applied Mathematics and Mathematical Computation 15. Chapman & Hall/CRC, Boca Raton (1999). Zbl 0928.76002, MR 1697762, 10.1201/9780203749364
Reference: [24] Qin, Y., Dong, X.: Local existence of solutions to 2D Prandtl equations in a weighted Sobolev space.Anal. Math. Phys. 12 (2022), Article ID 16, 26 pages. Zbl 1481.35343, MR 4350292, 10.1007/s13324-021-00615-z
Reference: [25] Qin, Y., Dong, X.: Local well-posedness of solutions to 2D mixed Prandtl equations in Sobolev space without monotonicity and lower bound.Nonlinear Anal., Real World Appl. 80 (2024), Article ID 104140, 13 pages. Zbl 1550.76360, MR 4759566, 10.1016/j.nonrwa.2024.104140
Reference: [26] Weinan, E., Engquist, B.: Blow up of solutions of the unsteady Prandtl's equation.Commun. Pure Appl. Math. 50 (1997), 1287-1293. Zbl 0908.35099, MR 1476316, 10.1002/(SICI)1097-0312(199712)50:12<1287::AID-CPA4>3.0.CO;2-4
Reference: [27] Xie, F., Yang, T.: Global-in-time stability of 2D MHD boundary Layer in the Prandtl-Hartmann regime.SIAM J. Math. Anal. 50 (2018), 5749-5760. Zbl 1402.76111, MR 3873032, 10.1137/18M1174969
Reference: [28] Xie, F., Yang, T.: Lifespan of solutions to MHD boundary layer equations with analytic perturbation of general shear flow.Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 209-229. Zbl 1414.76044, MR 3918641, 10.1007/s10255-019-0805-y
Reference: [29] Xin, Z., Zhang, L.: On the global existence of solutions to the Prandtl's system.Adv. Math. 181 (2004), 88-133. Zbl 1052.35135, MR 2020656, 10.1016/S0001-8708(03)00046-X
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo