Title: | Capacity solutions for a degenerate $p_{i}(x)$-Laplacian thermistor system with electrical conductivities (English) |
Author: | Khelifi, Hichem |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 70 |
Issue: | 2 |
Year: | 2025 |
Pages: | 203-230 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We establish the existence of a capacity solution for a degenerate anisotropic stationary system with variable exponents and electrical conductivity. The system is a generalization of the thermistor problem, addressing the interaction between temperature and electric potential within semiconductor material. (English) |
Keyword: | degenerate conductivity |
Keyword: | anisotropic equation |
Keyword: | thermistor problem |
Keyword: | variable exponent |
MSC: | 35J60 |
MSC: | 35K60 |
MSC: | 35K65 |
MSC: | 35M10 |
DOI: | 10.21136/AM.2025.0220-24 |
. | |
Date available: | 2025-05-26T12:15:47Z |
Last updated: | 2025-06-02 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152980 |
. | |
Reference: | [1] Adams, R. A.: Anisotropic Sobolev inequalities.Čas. pěstování mat. 113 (1988), 267-279. Zbl 0663.46024, MR 960763, 10.21136/CPM.1988.108786 |
Reference: | [2] Ahakkoud, Y., Bennouna, J., Elmassoudi, M.: Existence of a renormalized solutions to a nonlinear system in Orlicz spaces.Filomat 36 (2022), 5073-5092. MR 4554393, 10.2298/FIL2215073A |
Reference: | [3] Antontsev, S. N., Chipot, M.: The thermistor problem: Existence, smoothness, uniqueness, blowup.SIAM J. Math. Anal. 25 (1994), 1128-1156. Zbl 0808.35059, MR 1278895, 10.1137/S0036141092233482 |
Reference: | [4] Badii, M.: On the existence of periodic solutions in the thermistor problem with degenerate thermal conductivity.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 53-64. Zbl 1107.35311, MR 2246905, 10.1007/s11565-006-0005-6 |
Reference: | [5] Bahari, M., Arabi, R. El, Rhoudaf, M.: Capacity solution for a perturbed nonlinear coupled system.Ric. Mat. 69 (2020), 215-233. Zbl 1439.35138, MR 4098182, 10.1007/s11587-019-00459-7 |
Reference: | [6] Benaichouche, N., Ayadi, H., Mokhtari, F.: The anisotropic thermistor problem with degenerate thermal and electric conductivities.J. Elliptic Parabol. Equ. 9 (2023), 901-918. Zbl 1526.35151, MR 4655045, 10.1007/s41808-023-00229-5 |
Reference: | [7] Blasco, O., Pérez-Esteva, S.: The Bergman projection on weighted spaces: $L^1$ and Herz spaces.Stud. Math. 150 (2002), 151-162. Zbl 1008.47035, MR 1892726, 10.4064/sm150-2-4 |
Reference: | [8] Chipot, M., Cimatti, G.: A uniqueness result for the thermistor problem.Eur. J. Appl. Math. 2 (1991), 97-103. Zbl 0751.35022, MR 1117816, 10.1017/S0956792500000425 |
Reference: | [9] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8 |
Reference: | [10] Düzgün, F. G., Mosconi, S., Vespri, V.: Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations.J. Evol. Equ. 19 (2019), 845-882. Zbl 1423.35145, MR 3997246, 10.1007/s00028-019-00493-w |
Reference: | [11] Fan, X.: Anisotropic variable exponent Sobolev spaces and $\overrightarrow{p}(x)$-Laplacian equations.Complex Var. Elliptic Equ. 56 (2011), 623-642. Zbl 1236.46029, MR 2832206, 10.1080/17476931003728412 |
Reference: | [12] Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$.J. Math. Anal. Appl. 262 (2001), 749-760. Zbl 0995.46023, MR 1859337, 10.1006/jmaa.2001.7618 |
Reference: | [13] Montesinos, M. T. González, Gallego, F. Ortegón: The evolution thermistor problem with degenerate thermal conductivity.Commun. Pure Appl. Anal. 1 (2002), 313-325. Zbl 1012.35047, MR 1903000, 10.3934/cpaa.2002.1.313 |
Reference: | [14] Montesinos, M. T. González, Gallego, F. Ortegón: Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system.Commun. Pure Appl. Anal. 6 (2007), 23-42. Zbl 1141.35352, MR 2276328, 10.3934/cpaa.2007.6.23 |
Reference: | [15] Montesinos, M. T. González, Gallego, F. Ortegón: The evolution thermistor problem under the Wiedemann-Franz law with metallic conduction.Discrete Contin. Dyn. Syst., Ser. B 8 (2007), 901-923. Zbl 1142.35450, MR 2342128, 10.3934/dcdsb.2007.8.901 |
Reference: | [16] Montesinos, M. T. González, Gallego, F. Ortegón: The thermistor problem with degenerate thermal conductivity and metallic conduction.Discrete Contin. Dyn. Syst. 2007 (2007), 446-455. Zbl 1163.35442, MR 2409880, 10.3934/proc.2007.2007.446 |
Reference: | [17] Guan, P., Fan, J.: Global existence, uniqueness, and asymptotic behavior of the solutions of the thermistor problem.J. Nanjing Univ., Math. Biq. 13 (1996), 156-167. Zbl 0884.35024, MR 1440100 |
Reference: | [18] Guariglia, E., Guido, R. C.: Chebyshev wavelet analysis.J. Funct. Spaces 2022 (2022), Article ID 5542054, 17 pages. MR 4456105, 10.1155/2022/5542054 |
Reference: | [19] Guariglia, E., Silvestrov, S.: Fractional-wavelet analysis of positive definite distributions and wavelets on $\mathcal{D}'(\Bbb{C})$.Engineering Mathematics. II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization Springer, Cham (2016), 337-353. Zbl 1365.65294, MR 3630586, 10.1007/978-3-319-42105-6_16 |
Reference: | [20] Guliyev, V. S., Omarova, M. N., Ragusa, M. A.: Characterizations for the genuine Calderón-Zygmund operators and commutators on generalized Orlicz-Morrey spaces.Adv. Nonlinear Anal. 12 (2023), Article ID 20220307, 16 pages. Zbl 1530.42026, MR 4626319, 10.1515/anona-2022-0307 |
Reference: | [21] Khelifi, H.: Existence and regularity for solution to a degenerate problem with singular gradient lower order term.Moroccan J. Pure Appl. Anal. 8 (2022), 310-327. Zbl 1549.35233, MR 4716415, 10.2478/mjpaa-2022-0022 |
Reference: | [22] Khelifi, H.: The obstacle problem for nonlinear degenerate elliptic equations with variable exponents and $L^1$-data.J. Partial Diff. Equations 35 (2022), 101-122. Zbl 1499.35294, MR 4417495, 10.4208/jpde.v35.n2.1 |
Reference: | [23] Khelifi, H.: Application of the Stampacchia lemma to anisotropic degenerate elliptic equations.J. Innov. Appl. Math. Comput. Sci. 3 (2023), 75-82. 10.58205/jiamcs.v3i1.68 |
Reference: | [24] Khelifi, H.: Anisotropic degenerate elliptic problem with singular gradient lower order term.Boll. Unione Mat. Ital. 17 (2024), 149-174. Zbl 1533.35153, MR 4703444, 10.1007/s40574-023-00395-3 |
Reference: | [25] Khelifi, H.: Anisotropic parabolic-elliptic systems with degenerate thermal conductivity.Appl. Anal. 103 (2024), 2069-2101. Zbl 1548.35109, MR 4774280, 10.1080/00036811.2023.2282140 |
Reference: | [26] Khelifi, H., Mokhtari, F.: Nonlinear degenerate anisotropic elliptic equations with variable exponents and $L^1$ data.J. Partial Differ. Equations 33 (2020), 1-16. Zbl 1463.35252, MR 4218038, 10.4208/jpde.v33.n1.1 |
Reference: | [27] Khelifi, H., Zouatini, M. A.: Nonlinear degenerate $p(x)$-Laplacian equation with singular gradient and lower order term.Indian J. Pure Appl. Math. 56 (2025), 46-66. Zbl 07985479, MR 4858041, 10.1007/s13226-023-00460-9 |
Reference: | [28] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493 |
Reference: | [29] Kruzhkov, S. N., Kolodij, I. M.: On the theory of embedding of anisotropic Sobolev spaces.Russ. Math. Surv. 38 (1983), 188-189. Zbl 0534.46022, MR 0695478, 10.1070/RM1983v038n02ABEH003476 |
Reference: | [30] Dret, H. Le: Nonlinear Elliptic Partial Differential Equations: An Introduction.Universitext. Springer, Cham (2018). Zbl 1405.35001, MR 3793605, 10.1007/978-3-319-78390-1 |
Reference: | [31] Li, G., Wang, G., Zhang, L.: A capacity associated with the weighted Lebesgue space and its applications.J. Funct. Spaces 2022 (2022), Article ID 1257963, 11 pages. Zbl 1495.46021, MR 4392088, 10.1155/2022/1257963 |
Reference: | [32] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693 |
Reference: | [33] Mokhtar, N.: Anisotropic nonlinear elliptic systems with variable exponents, degenerate coercivity and $L^{q(\cdot)}$ data.Ann. Acad. Rom. Sci., Math. Appl. 14 (2022), 107-140. Zbl 1513.35243, MR 4419207, 10.56082/annalsarscimath.2022.1-2.107 |
Reference: | [34] Moussa, H., Gallego, F. Ortegón, Rhoudaf, M.: Capacity solution to a coupled system of parabolic-elliptic equations in Orlicz-Sobolev spaces.NoDEA, Nonlinear Differ. Equ. Appl. 25 (2018), Article ID 14, 37 pages. Zbl 1391.35233, MR 3773787, 10.1007/s00030-018-0505-y |
Reference: | [35] Nesraoui, R., Khelifi, H.: Anisotropic elliptic problem involving a singularity and a Radon measure.Filomat 38 (2024), 9435-9451. MR 4853204, 10.2298/FIL2427435N |
Reference: | [36] Nikol'skij, S. M.: Imbedding theorems for functions with partial derivatives, considered in different metrics.Dokl. Akad. Nauk SSSR 118 (1958), 35-37 Russian. Zbl 0206.12205, MR 0093561 |
Reference: | [37] Gallego, F. Ortegón, Rhoudaf, M., Talbi, H.: Capacity solution and numerical approximation to a nonlinear coupled elliptic system in anisotropic Sobolev spaces.J. Appl. Anal. Comput. 12 (2022), 2184-2207. Zbl 07919237, MR 4512852, 10.11948/20210208 |
Reference: | [38] Rafeiro, H., Samko, S.: Riesz potential operator in continual variable exponents Herz spaces.Math. Nachr. 288 (2015), 465-475. Zbl 1325.46034, MR 3320460, 10.1002/mana.201300270 |
Reference: | [39] Ragusa, M. A.: Parabolic Herz spaces and their applications.Appl. Math. Lett. 25 (2012), 1270-1273. Zbl 1255.35131, MR 2947392, 10.1016/j.aml.2011.11.022 |
Reference: | [40] Rákosník, J.: Some remarks to anisotropic Sobolev spaces. I.Beitr. Anal. 13 (1979), 55-68. Zbl 0399.46025, MR 0536217 |
Reference: | [41] Rákosník, J.: Some remarks to anisotropic Sobolev spaces. II.Beitr. Anal. 15 (1981), 127-140. Zbl 0494.46034, MR 0614784 |
Reference: | [42] Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi.Ric. Mat. 18 (1969), 3-24 Italian. Zbl 0182.16802, MR 0415302 |
Reference: | [43] Xie, W.: On the existence and uniqueness for the thermistor problem.Adv. Math. Sci. Appl. 2 (1993), 63-73. Zbl 0808.35154, MR 1239249 |
Reference: | [44] Xu, X.: A degenerate Stefan-like problem with Joule's heating.SIAM J. Math. Anal. 23 (1992), 1417-1438. Zbl 0768.35081, MR 1185636, 10.1137/0523081 |
Reference: | [45] Xu, X.: A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type.Commun. Partial Differ. Equations 18 (1993), 199-213. Zbl 0814.35062, MR 1211731, 10.1080/03605309308820927 |
Reference: | [46] Xu, X.: On the existence of bounded temperature in the thermistor problem with degeneracy.Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 199-213. Zbl 0964.35005, MR 1773978, 10.1016/S0362-546X(98)00340-X |
Reference: | [47] Yuan, G., Liu, Z.: Existence and uniqueness of the $C^{\alpha}$ solution for the thermistor problem with mixed boundary value.SIAM J. Math. Anal. 25 (1994), 1157-1166. Zbl 0808.35064, MR 1278896, 10.1137/S0036141092237893 |
Reference: | [48] Zhang, X., Fu, Y.: Solutions for nonlinear elliptic equations with variable growth and degenerate coercivity.Ann. Mat. Pura Appl. (4) 193 (2014), 133-161. Zbl 1305.35063, MR 3158842, 10.1007/s10231-012-0270-1 |
Reference: | [49] Zouatini, M. A., Khelifi, H., Mokhtari, F.: Anisotropic degenerate elliptic problem with a singular nonlinearity.Adv. Oper. Theory 8 (2023), Article ID 13, 24 pages. Zbl 1506.35078, MR 4530493, 10.1007/s43036-022-00240-y |
Reference: | [50] Zouatini, M. A., Mokhtari, F., Khelifi, H.: Degenerate elliptic problem with singular gradient lower order term and variable exponents.Math. Model. Comput. 10 (2023), 133-146. MR 4703444, 10.23939/mmc2023.01.133 |
. |
Fulltext not available (moving wall 24 months)