| Title: | Strongly Gorenstein-projective modules over Nakayama algebras (English) |
| Author: | Luo, Xiu-Hua |
| Author: | Liu, Kui |
| Author: | Zhu, Shijie |
| Language: | English |
| Journal: | Czechoslovak Mathematical Journal |
| ISSN: | 0011-4642 (print) |
| ISSN: | 1572-9141 (online) |
| Volume: | 75 |
| Issue: | 3 |
| Year: | 2025 |
| Pages: | 753-765 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | We study finitely generated strongly Gorenstein-projective modules over artin algebras and show that each finitely generated strongly Gorenstein-projective module is a direct sum of some indecomposable periodic Gorenstein-projective modules and projective modules. Furthermore, we outline the structure of the category of the finitely generated strongly Gorenstein-projective $\Lambda $-modules, where $\Lambda $ is a Nakayama algebra. (English) |
| Keyword: | (strongly) Gorenstein-projective module |
| Keyword: | Nakayama algebra |
| Keyword: | resolution quiver |
| Keyword: | Gorenstein core |
| MSC: | 16E65 |
| MSC: | 16G10 |
| DOI: | 10.21136/CMJ.2025.0257-24 |
| . | |
| Date available: | 2025-09-19T11:44:39Z |
| Last updated: | 2025-09-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153047 |
| . | |
| Reference: | [1] Assem, I., Simson, D., Skowroński, A.: Elements of Representation Theory of Associative Algebras. Volume 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309 |
| Reference: | [2] Auslander, M., Bridger, M.: Stable Module Theory.Memoirs of the American Mathematical Society 94. AMS, Providence (1969). Zbl 0204.36402, MR 0269685, 10.1090/memo/0094 |
| Reference: | [3] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608 |
| Reference: | [4] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective, and flat modules.J. Pure Appl. Algebra 210 (2007), 437-445. Zbl 1118.13014, MR 2320007, 10.1016/j.jpaa.2006.10.010 |
| Reference: | [5] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634 |
| Reference: | [6] Gao, N., Zhang, P.: Strongly Gorenstein projective modules over upper triangular matrix Artin algebras.Commun. Algebra 37 (2009), 4259-4268. Zbl 1220.16013, MR 2588847, 10.1080/00927870902828934 |
| Reference: | [7] Ringel, C. M.: The Gorenstein projective modules for the Nakayama algebras. I.J. Algebra 385 (2013), 241-261. Zbl 1341.16010, MR 3049570, 10.1016/j.jalgebra.2013.03.014 |
| Reference: | [8] Ringel, C. M., Zhang, P.: Gorenstein-projective and semi-Gorenstein-projective modules.Algebra Number Theory 14 (2020), 1-36. Zbl 1441.16016, MR 4076806, 10.2140/ant.2020.14.1 |
| Reference: | [9] Shen, D.: A note on resolution quivers.J. Algebra Appl. 13 (2014), Article ID 1350120, 5 pages. Zbl 1292.16009, MR 3125888, 10.1142/S021949881350120X |
| Reference: | [10] Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules.J. Algebra 320 (2008), 2659-2674. Zbl 1173.16006, MR 2441993, 10.1016/j.jalgebra.2008.07.006 |
| . |
Fulltext not available (moving wall 24 months)