| Title: | Finite groups with many normalizers (English) |
| Author: | Tărnăuceanu, Marius |
| Language: | English |
| Journal: | Czechoslovak Mathematical Journal |
| ISSN: | 0011-4642 (print) |
| ISSN: | 1572-9141 (online) |
| Volume: | 75 |
| Issue: | 3 |
| Year: | 2025 |
| Pages: | 767-772 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | A group $G$ is said to have dense normalizers if every nonempty open interval in its subgroup lattice $L(G)$ contains the normalizer of a certain subgroup of $G$. We find all finite groups satisfying this property. We also classify the finite groups, in which $k$ subgroups are not normalizers for $k=1,2,3,4$. (English) |
| Keyword: | normalizer |
| Keyword: | density |
| Keyword: | finite group |
| MSC: | 20D30 |
| MSC: | 20D60 |
| MSC: | 20E99 |
| DOI: | 10.21136/CMJ.2025.0325-24 |
| . | |
| Date available: | 2025-09-19T11:45:10Z |
| Last updated: | 2025-09-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153049 |
| . | |
| Reference: | [1] Calhoun, W. C.: Counting subgroups of some finite groups.Am. Math. Mon. 94 (1987), 54-59. Zbl 1303.20024, MR 0873605, 10.1080/00029890.1987.12000593 |
| Reference: | [2] Cheng, K. N., Deaconescu, M., Lang, M. L., Shi, W.: Corrigendum and addendum to ``Classification of finite groups with all elements of prime order''.Proc. Am. Math. Soc. 117 (1993), 1205-1207. Zbl 0787.20014, MR 1116270, 10.1090/S0002-9939-1993-1116270-7 |
| Reference: | [3] Deaconescu, M.: Classification of finite groups with all elements of prime order.Proc. Am. Math. Soc. 106 (1989), 625-629. Zbl 0683.20020, MR 0969518, 10.1090/S0002-9939-1989-0969518-2 |
| Reference: | [4] Galoppo, A.: Groups with dense normal-by-finite subgroups.Ric. Mat. 46 (1997), 45-48. Zbl 0949.20027, MR 1615711 |
| Reference: | [5] Galoppo, A.: Groups with dense nearly normal subgroups.Note Mat. 20 (2001), 15-18. Zbl 1147.20304, MR 1897590, 10.1285/i15900932v20n2p15 |
| Reference: | [6] Giovanni, F. de, Russo, A.: Groups with dense subnormal subgroups.Rend. Semin. Mat. Univ. Padova 101 (1999), 19-27. Zbl 0936.20023, MR 1705276 |
| Reference: | [7] Huppert, B.: Endliche Gruppen. I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin (1967), German. Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3 |
| Reference: | [8] Malinowska, I. A.: Finite groups with few normalizers or involutions.Arch. Math. 112 (2019), 459-465. Zbl 1444.20009, MR 3943466, 10.1007/s00013-018-1290-x |
| Reference: | [9] Mann, A.: Groups with dense normal subgroups.Isr. J. Math. 6 (1968), 13-25. Zbl 0155.05003, MR 0232859, 10.1007/BF02771600 |
| Reference: | [10] Pérez-Ramos, M. D.: Groups with two normalizers.Arch. Math. 50 (1988), 199-203. Zbl 0634.20011, MR 0933911, 10.1007/BF01187733 |
| Reference: | [11] Schmidt, R.: Subgroup Lattices of Groups.De Gruyter Expositions in Mathematics 14. Walter De Gruyter, Berlin (1994). Zbl 0843.20003, MR 1292462, 10.1515/9783110868647 |
| Reference: | [12] Suzuki, M.: Group Theory. I.Grundlehren der Mathematischen Wissenschaften 247. Springer, Berlin (1982). Zbl 0472.20001, MR 0648772 |
| Reference: | [13] Suzuki, M.: Group Theory. II.Grundlehren der Mathematischen Wissenschaften 248. Springer, Berlin (1986). Zbl 0586.20001, MR 0815926, 10.1007/978-3-642-86885-6 |
| Reference: | [14] Vincenzi, G.: Groups with dense pronormal subgroups.Ric. Mat. 40 (1991), 75-79. Zbl 0754.20011, MR 1191887 |
| Reference: | [15] Zarrin, M.: On groups with a finite number of normalisers.Bull. Aust. Math. Soc. 86 (2012), 416-423. Zbl 1281.20032, MR 2995893, 10.1017/S000497271200007X |
| Reference: | [16] Zarrin, M.: On solubility of groups with few normalisers.Bull. Aust. Math. Soc. 90 (2014), 247-249. Zbl 1303.20039, MR 3252007, 10.1017/S000497271400015X |
| . |
Fulltext not available (moving wall 24 months)