Previous |  Up |  Next

Article

Title: Finite groups with many normalizers (English)
Author: Tărnăuceanu, Marius
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 767-772
Summary lang: English
.
Category: math
.
Summary: A group $G$ is said to have dense normalizers if every nonempty open interval in its subgroup lattice $L(G)$ contains the normalizer of a certain subgroup of $G$. We find all finite groups satisfying this property. We also classify the finite groups, in which $k$ subgroups are not normalizers for $k=1,2,3,4$. (English)
Keyword: normalizer
Keyword: density
Keyword: finite group
MSC: 20D30
MSC: 20D60
MSC: 20E99
DOI: 10.21136/CMJ.2025.0325-24
.
Date available: 2025-09-19T11:45:10Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153049
.
Reference: [1] Calhoun, W. C.: Counting subgroups of some finite groups.Am. Math. Mon. 94 (1987), 54-59. Zbl 1303.20024, MR 0873605, 10.1080/00029890.1987.12000593
Reference: [2] Cheng, K. N., Deaconescu, M., Lang, M. L., Shi, W.: Corrigendum and addendum to ``Classification of finite groups with all elements of prime order''.Proc. Am. Math. Soc. 117 (1993), 1205-1207. Zbl 0787.20014, MR 1116270, 10.1090/S0002-9939-1993-1116270-7
Reference: [3] Deaconescu, M.: Classification of finite groups with all elements of prime order.Proc. Am. Math. Soc. 106 (1989), 625-629. Zbl 0683.20020, MR 0969518, 10.1090/S0002-9939-1989-0969518-2
Reference: [4] Galoppo, A.: Groups with dense normal-by-finite subgroups.Ric. Mat. 46 (1997), 45-48. Zbl 0949.20027, MR 1615711
Reference: [5] Galoppo, A.: Groups with dense nearly normal subgroups.Note Mat. 20 (2001), 15-18. Zbl 1147.20304, MR 1897590, 10.1285/i15900932v20n2p15
Reference: [6] Giovanni, F. de, Russo, A.: Groups with dense subnormal subgroups.Rend. Semin. Mat. Univ. Padova 101 (1999), 19-27. Zbl 0936.20023, MR 1705276
Reference: [7] Huppert, B.: Endliche Gruppen. I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin (1967), German. Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [8] Malinowska, I. A.: Finite groups with few normalizers or involutions.Arch. Math. 112 (2019), 459-465. Zbl 1444.20009, MR 3943466, 10.1007/s00013-018-1290-x
Reference: [9] Mann, A.: Groups with dense normal subgroups.Isr. J. Math. 6 (1968), 13-25. Zbl 0155.05003, MR 0232859, 10.1007/BF02771600
Reference: [10] Pérez-Ramos, M. D.: Groups with two normalizers.Arch. Math. 50 (1988), 199-203. Zbl 0634.20011, MR 0933911, 10.1007/BF01187733
Reference: [11] Schmidt, R.: Subgroup Lattices of Groups.De Gruyter Expositions in Mathematics 14. Walter De Gruyter, Berlin (1994). Zbl 0843.20003, MR 1292462, 10.1515/9783110868647
Reference: [12] Suzuki, M.: Group Theory. I.Grundlehren der Mathematischen Wissenschaften 247. Springer, Berlin (1982). Zbl 0472.20001, MR 0648772
Reference: [13] Suzuki, M.: Group Theory. II.Grundlehren der Mathematischen Wissenschaften 248. Springer, Berlin (1986). Zbl 0586.20001, MR 0815926, 10.1007/978-3-642-86885-6
Reference: [14] Vincenzi, G.: Groups with dense pronormal subgroups.Ric. Mat. 40 (1991), 75-79. Zbl 0754.20011, MR 1191887
Reference: [15] Zarrin, M.: On groups with a finite number of normalisers.Bull. Aust. Math. Soc. 86 (2012), 416-423. Zbl 1281.20032, MR 2995893, 10.1017/S000497271200007X
Reference: [16] Zarrin, M.: On solubility of groups with few normalisers.Bull. Aust. Math. Soc. 90 (2014), 247-249. Zbl 1303.20039, MR 3252007, 10.1017/S000497271400015X
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo