Previous |  Up |  Next

Article

Title: Schofield sequences for weighted projective lines of type $(2,2,n)$ (English)
Author: Zhang, Xiaofeng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 773-784
Summary lang: English
.
Category: math
.
Summary: We focus on the Schofield sequences over weighted projective lines in the sense of Geigle and Lenzing. We give a classification of all the Schofield sequences whose middle terms are line bundles or extension bundles for any weight type $(2,2,n)$. In particular, for the latter case such Schofield sequences are related to the distinguished exact structure on the subcategory of vector bundles. More precisely, the projective covers and injective hulls of extension bundles will provide Schofield sequences, and all the Schofield sequences in the subcategory of vector bundles can be obtained in this way. (English)
Keyword: Schofield sequence
Keyword: exceptional sheaf
Keyword: projective cover
Keyword: injective hull
Keyword: weighted projective line
MSC: 14F06
MSC: 16G70
DOI: 10.21136/CMJ.2025.0345-24
.
Date available: 2025-09-19T11:46:41Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153050
.
Reference: [1] Chen, B.: The Gabriel-Roiter Measure for Representation-Finite Hereditary Algebras: Dissertation.Bielefeld University, Bielefeld (2006). Zbl 1248.16014
Reference: [2] Crawley-Boevey, W.: Exceptional sequences of representations of quivers.Representations of Algebras CMS Conference Proceedings 14. AMS, Providence (1993), 117-124. Zbl 0828.16012, MR 1265279
Reference: [3] Geigle, W., Lenzing, H.: A class of weighted projective curves arising in representation theory of finite dimensional algebras.Singularities, Representations of Algebras and Vector Bundles Lecture Notes in Mathematics 1273. Springer, Berlin (1987), 265-297. Zbl 0651.14006, MR 0915180, 10.1007/BFb0078849
Reference: [4] Happel, D.: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras.London Mathematical Society Lecture Note Series 119. Cambridge University Press, Cambridge (1988). Zbl 0635.16017, MR 0935124, 10.1017/CBO9780511629228
Reference: [5] Kedzierski, D., Meltzer, H.: Schofield induction for sheaves on weighted projective lines.Commun. Algebra 41 (2013), 2033-2039. Zbl 1314.14035, MR 3225254, 10.1080/00927872.2011.642042
Reference: [6] Kerner, O.: Elementary stones.Commun. Algebra 22 (1994), 1797-1806. Zbl 0819.16008, MR 1264742, 10.1080/00927879408824936
Reference: [7] Kerner, O.: Representations of wild quivers.Representation Theory of Algebras and Related Topics CMS Conference Proceedings 19. AMS, Providence (1996), 65-107. Zbl 0863.16010, MR 1388560
Reference: [8] Kussin, D., Lenzing, H., Meltzer, H.: Triangle singularities, ADE-chains, and weighted projective lines.Adv. Math. 237 (2013), 194-251. Zbl 1273.14075, MR 3028577, 10.1016/j.aim.2013.01.006
Reference: [9] Kussin, D., Meltzer, H.: The braid group action for exceptional curves.Arch. Math. 79 (2002), 335-344. Zbl 1062.16016, MR 1951302, 10.1007/PL00012455
Reference: [10] Lenzing, H.: Weighted projective lines and applications.Representations of Algebras and Related Topics EMS Series of Congress Reports. EMS, Zürich (2011), 153-187. Zbl 1316.14037, MR 2931898, 10.4171/101-1/5
Reference: [11] Lenzing, H., Meltzer, H.: Exceptional pairs in hereditary categories.Commun. Algebra 37 (2009), 2547-2556. Zbl 1179.14016, MR 2543502, 10.1080/00927870802174140
Reference: [12] Meltzer, H.: Exceptional sequences for canonical algebras.Arch. Math. 64 (1995), 304-312. Zbl 0818.16016, MR 1318999, 10.1007/BF01198084
Reference: [13] Meltzer, H.: Exceptional vector bundles, tilting sheaves and tilting complexes for weighted projective lines.Mem. Am. Math. Soc. 808 (2004), 138 pages. Zbl 1055.14016, MR 2074151, 10.1090/memo/0808
Reference: [14] Ringel, C. M.: The braid group action on the set of exceptional sequences of a hereditary Artin algebra.Abelian Group Theory and Related Topics Contemporary Mathematics 171. AMS, Providence (1994), 339-352. Zbl 0851.16010, MR 1293154, 10.1090/conm/171
Reference: [15] Ringel, C. M.: Exceptional objects in hereditary categories.An. Ştiinţ. Univ. ``Ovidius'' Constanţa, Ser. Mat. 4 (1996), 150-158. Zbl 0888.16005, MR 1428463
Reference: [16] Ringel, C. M.: Exceptional modules are tree modules.Linear Algebra Appl. 275-276 (1998), 471-493. Zbl 0964.16014, MR 1628405, 10.1016/S0024-3795(97)10046-5
Reference: [17] (ed.), A. N. Rudakov: Helices and Vector Bundles.London Mathematical Society Lecture Note Series 148. Cambridge University Press, Cambridge (1990). Zbl 0727.00022, MR 1074776, 10.1017/CBO9780511721526
Reference: [18] Schofield, A.: Semi-invariants of quivers.J. Lond. Math. Soc., II. Ser. 43 (1991), 383-395. Zbl 0779.16005, MR 1113382, 10.1112/jlms/s2-43.3.385
Reference: [19] Szántó, C., Szöllősi, I.: Schofield sequences in the Euclidean case.J. Pure Appl. Algebra 225 (2021), Article ID 106586, 124 pages. Zbl 1483.16021, MR 4163146, 10.1016/j.jpaa.2020.106586
Reference: [20] Unger, L.: Schur modules over wild, finite dimensional path algebras with three simple modules.J. Pure Appl. Algebra 64 (1990), 205-222. Zbl 0701.16012, MR 1055030, 10.1016/0022-4049(90)90157-D
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo