Previous |  Up |  Next

Article

Title: Weakly $S$-2-absorbing ideals (English)
Author: Sihem, Smach
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 793-806
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with identity. The notion of $S$-$2$-absorbing ideal was introduced by G. Ulucak, Ü. Tekir, S. Koç (2020) as a generalization of $2$-absorbing ideal. We introduce $a$ weaker version of 2-absorbing ideals by defining the concept of weakly-$S$-2-absorbing ideal. Let $S\subseteq R$ be a multiplicatively closed subset of $R$. A proper ideal $I$ of $R$ disjoint with $S$ is called a weakly $S$-2-absorbing ideal of $R$ if whenever $abc\in I$ for $a,b,c\in R$ then there exists $s\in S$ such that $sab\in I$ or $sbc\in I$ or $sac\in I$. We investigate many properties and characterizations of weakly $S$-2-absorbing ideals. (English)
Keyword: $S$-2-absorbing ideal
Keyword: weakly $S$-2-absorbing ideal
Keyword: $S$-prime ideal
MSC: 13A15
MSC: 13A99
DOI: 10.21136/CMJ.2025.0397-24
.
Date available: 2025-09-19T11:47:33Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153052
.
Reference: [1] Anderson, D. D., Arabaci, T., Tekir, Ü., Koç, S.: On $S$-multiplication modules.Commun. Algebra 48 (2020), 3398-3407. Zbl 1452.13003, MR 4115356, 10.1080/00927872.2020.1737873
Reference: [2] Anderson, D. F., Badawi, A.: On $n$-absorbing ideals of commutative rings.Commun. Algebra 39 (2011), 1646-1672. Zbl 1232.13001, MR 2821499, 10.1080/00927871003738998
Reference: [3] Anderson, D. D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3-56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3
Reference: [4] Badawi, A.: On 2-absorbing ideals of commutative rings.Bull. Aust. Math. Soc. 75 (2007), 417-429. Zbl 1120.13004, MR 2331019, 10.1017/S0004972700039344
Reference: [5] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal.J. Pure Appl. Algebra 214 (2010), 1633-1641. Zbl 1191.13006, MR 2593689, 10.1016/j.jpaa.2009.12.008
Reference: [6] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties.J. Algebra Appl. 6 (2007), 443-459. Zbl 1126.13002, MR 2342602, 10.1142/S0219498807002326
Reference: [7] Hamed, A., Malek, A.: $S$-prime ideals of a commutative ring.Beitr. Algebra Geom. 61 (2020), 533-542. Zbl 1442.13010, MR 4127389, 10.1007/s13366-019-00476-5
Reference: [8] Nagata, M.: Local Rings.Interscience Tracts in Pure and Applied Mathematics 13. John Wiley & Sons, New York (1962). Zbl 0123.03402, MR 0155856
Reference: [9] Sihem, S., Sana, H.: On Anderson-Badawi conjectures.Beitr. Algebra Geom. 58 (2017), 775-785. Zbl 1390.13011, MR 3702976, 10.1007/s13366-017-0343-9
Reference: [10] Ulucak, G., Tekir, Ü., Koç, S.: On $S$-2-absorbing submodules and vn-regular modules.An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 28 (2020), 239-257. Zbl 1488.13029, MR 4152440, 10.2478/auom-2020-0030
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo