| Title: | Commuting Toeplitz operators with harmonic symbols on the Fock-Sobolev space (English) |
| Author: | Qin, Jie |
| Author: | Liu, Youqi |
| Language: | English |
| Journal: | Czechoslovak Mathematical Journal |
| ISSN: | 0011-4642 (print) |
| ISSN: | 1572-9141 (online) |
| Volume: | 75 |
| Issue: | 3 |
| Year: | 2025 |
| Pages: | 807-820 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | We make a progress towards describing the commuting Toeplitz operators with harmonic symbols on the Fock-Sobolev space. For the certain symbol space, we obtain two Toeplitz operators with harmonic symbols commuting only in the obvious cases, which is different from the known result in the Fock space. (English) |
| Keyword: | commuting Toeplitz operator |
| Keyword: | Berezin transform |
| Keyword: | Fock-Sobolev space |
| MSC: | 47B35 |
| DOI: | 10.21136/CMJ.2025.0398-24 |
| . | |
| Date available: | 2025-09-19T11:49:02Z |
| Last updated: | 2025-09-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153053 |
| . | |
| Reference: | [1] Axler, S., Čučković, Ž.: Commuting Toeplitz operators with harmonic symbols.Integral Equations Oper. Theory 14 (1991), 1-12. Zbl 0733.47027, MR 1079815, 10.1007/BF01194925 |
| Reference: | [2] Bauer, W., Choe, B. R., Koo, H.: Commuting Toeplitz operators with pluriharmonic symbols on the Fock space.J. Funct. Anal. 268 (2015), 3017-3060. Zbl 1327.47023, MR 3331792, 10.1016/j.jfa.2015.03.003 |
| Reference: | [3] Brown, A., Halmos, P. R.: Algebraic properties of Toeplitz operators.J. Reine Angew. Math. 213 (1964), 89-102. Zbl 0116.32501, MR 0160136, 10.1515/crll.1964.213.89 |
| Reference: | [4] Cho, H. R., Zhu, K.: Fock-Sobolev spaces and their Carleson measures.J. Funct. Anal. 263 (2012), 2483-2506. Zbl 1264.46017, MR 2964691, 10.1016/j.jfa.2012.08.003 |
| Reference: | [5] Choe, B. R., Koo, H., Lee, Y. J.: Commuting Toeplitz operators on the polydisk.Trans. Am. Math. Soc. 356 (2004), 1727-1749. Zbl 1060.47034, MR 2031039, 10.1090/S0002-9947-03-03430-5 |
| Reference: | [6] Choe, B. R., Lee, Y. J.: Pluriharmonic symbols of commuting Toeplitz operators.Ill. J. Math. 37 (1993), 424-436. Zbl 0816.47024, MR 1219648, 10.1215/ijm/1255987059 |
| Reference: | [7] Choe, B. R., Yang, J.: Commutants of Toeplitz operators with radial symbols on the Fock-Sobolev space.J. Math. Anal. Appl. 415 (2014), 779-790. Zbl 1308.47035, MR 3178290, 10.1016/j.jmaa.2014.02.018 |
| Reference: | [8] Le, T.: The commutants of certain Toeplitz operators on weighted Bergman spaces.J. Math. Anal. Appl. 348 (2008), 1-11. Zbl 1168.47025, MR 2449321, 10.1016/j.jmaa.2008.07.005 |
| Reference: | [9] Lee, Y. J.: Commuting Toeplitz operators on the Hardy space of the polydisk.Proc. Am. Math. Soc. 138 (2010), 189-197. Zbl 1189.47028, MR 2550183, 10.1090/S0002-9939-09-10073-4 |
| Reference: | [10] Louhichi, I., Rao, N. V.: Bicommutants of Toeplitz operators.Arch. Math. 91 (2008), 256-264. Zbl 1168.47026, MR 2439600, 10.1007/s00013-008-2790-x |
| Reference: | [11] Qin, J.: Semi-commuting Toeplitz operators on Fock-Sobolev spaces.Bull. Sci. Math. 179 (2022), Article ID 103156, 19 pages. Zbl 07574664, MR 4436349, 10.1016/j.bulsci.2022.103156 |
| Reference: | [12] Qin, J.: Semi-commutants of Toeplitz operators on Fock-Sobolev space of nonnegative orders.Complex Anal. Oper. Theory 18 (2024), Article ID 137, 24 pages. Zbl 07898612, MR 4782214, 10.1007/s11785-024-01574-6 |
| Reference: | [13] Qin, J.: Semi-commutants of Toeplitz operators on the Fock-Sobolev space.(to appear) in Indian J. Pure. Appl. Math. 10.1007/s13226-024-00605-4 |
| Reference: | [14] Zheng, D.: Commuting Toeplitz operators with pluriharmonic symbols.Trans. Am. Math. Soc. 350 (1998), 1595-1618. Zbl 0998.47017, MR 1443898, 10.1090/S0002-9947-98-02051-0 |
| . |
Fulltext not available (moving wall 24 months)