Previous |  Up |  Next

Article

Title: Commuting Toeplitz operators with harmonic symbols on the Fock-Sobolev space (English)
Author: Qin, Jie
Author: Liu, Youqi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 807-820
Summary lang: English
.
Category: math
.
Summary: We make a progress towards describing the commuting Toeplitz operators with harmonic symbols on the Fock-Sobolev space. For the certain symbol space, we obtain two Toeplitz operators with harmonic symbols commuting only in the obvious cases, which is different from the known result in the Fock space. (English)
Keyword: commuting Toeplitz operator
Keyword: Berezin transform
Keyword: Fock-Sobolev space
MSC: 47B35
DOI: 10.21136/CMJ.2025.0398-24
.
Date available: 2025-09-19T11:49:02Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153053
.
Reference: [1] Axler, S., Čučković, Ž.: Commuting Toeplitz operators with harmonic symbols.Integral Equations Oper. Theory 14 (1991), 1-12. Zbl 0733.47027, MR 1079815, 10.1007/BF01194925
Reference: [2] Bauer, W., Choe, B. R., Koo, H.: Commuting Toeplitz operators with pluriharmonic symbols on the Fock space.J. Funct. Anal. 268 (2015), 3017-3060. Zbl 1327.47023, MR 3331792, 10.1016/j.jfa.2015.03.003
Reference: [3] Brown, A., Halmos, P. R.: Algebraic properties of Toeplitz operators.J. Reine Angew. Math. 213 (1964), 89-102. Zbl 0116.32501, MR 0160136, 10.1515/crll.1964.213.89
Reference: [4] Cho, H. R., Zhu, K.: Fock-Sobolev spaces and their Carleson measures.J. Funct. Anal. 263 (2012), 2483-2506. Zbl 1264.46017, MR 2964691, 10.1016/j.jfa.2012.08.003
Reference: [5] Choe, B. R., Koo, H., Lee, Y. J.: Commuting Toeplitz operators on the polydisk.Trans. Am. Math. Soc. 356 (2004), 1727-1749. Zbl 1060.47034, MR 2031039, 10.1090/S0002-9947-03-03430-5
Reference: [6] Choe, B. R., Lee, Y. J.: Pluriharmonic symbols of commuting Toeplitz operators.Ill. J. Math. 37 (1993), 424-436. Zbl 0816.47024, MR 1219648, 10.1215/ijm/1255987059
Reference: [7] Choe, B. R., Yang, J.: Commutants of Toeplitz operators with radial symbols on the Fock-Sobolev space.J. Math. Anal. Appl. 415 (2014), 779-790. Zbl 1308.47035, MR 3178290, 10.1016/j.jmaa.2014.02.018
Reference: [8] Le, T.: The commutants of certain Toeplitz operators on weighted Bergman spaces.J. Math. Anal. Appl. 348 (2008), 1-11. Zbl 1168.47025, MR 2449321, 10.1016/j.jmaa.2008.07.005
Reference: [9] Lee, Y. J.: Commuting Toeplitz operators on the Hardy space of the polydisk.Proc. Am. Math. Soc. 138 (2010), 189-197. Zbl 1189.47028, MR 2550183, 10.1090/S0002-9939-09-10073-4
Reference: [10] Louhichi, I., Rao, N. V.: Bicommutants of Toeplitz operators.Arch. Math. 91 (2008), 256-264. Zbl 1168.47026, MR 2439600, 10.1007/s00013-008-2790-x
Reference: [11] Qin, J.: Semi-commuting Toeplitz operators on Fock-Sobolev spaces.Bull. Sci. Math. 179 (2022), Article ID 103156, 19 pages. Zbl 07574664, MR 4436349, 10.1016/j.bulsci.2022.103156
Reference: [12] Qin, J.: Semi-commutants of Toeplitz operators on Fock-Sobolev space of nonnegative orders.Complex Anal. Oper. Theory 18 (2024), Article ID 137, 24 pages. Zbl 07898612, MR 4782214, 10.1007/s11785-024-01574-6
Reference: [13] Qin, J.: Semi-commutants of Toeplitz operators on the Fock-Sobolev space.(to appear) in Indian J. Pure. Appl. Math. 10.1007/s13226-024-00605-4
Reference: [14] Zheng, D.: Commuting Toeplitz operators with pluriharmonic symbols.Trans. Am. Math. Soc. 350 (1998), 1595-1618. Zbl 0998.47017, MR 1443898, 10.1090/S0002-9947-98-02051-0
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo