Previous |  Up |  Next

Article

Title: Relative Rota-Baxter operators, modules and projections (English)
Author: Fernández Vilaboa, José Manuel
Author: González Rodríguez, Ramón
Author: Ramos Pérez, Brais
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 865-913
Summary lang: English
.
Category: math
.
Summary: The present article is devoted to introduce, in a braided monoidal setting, the notion of module over a relative Rota-Baxter operator. It is proved that there exists an adjunction between the category of modules associated to an invertible relative Rota-Baxter operator and the category of modules associated to a Hopf brace, which induces an equivalence by assuming certain additional hypothesis. Moreover, the notion of projection between relative Rota-Baxter operators is defined, and it is proved that those which are called ``strong'' give rise to a module according to the previous definition in the cocommutative setting. (English)
Keyword: braided monoidal category
Keyword: Hopf algebra
Keyword: Hopf brace
Keyword: relative Rota-Baxter operator
MSC: 16T05
MSC: 17B38
MSC: 18M05
DOI: 10.21136/CMJ.2025.0467-24
.
Date available: 2025-09-19T11:56:09Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153057
.
Reference: [1] Álvarez, J. N. Alonso, Vilaboa, J. M. Fernández: Cleft extensions in braided categories.Commun. Algebra 28 (2000), 3185-3196. Zbl 0959.18005, MR 1765310, 10.1080/00927870008827018
Reference: [2] Angiono, I., Galindo, C., Vendramin, L.: Hopf braces and Yang-Baxter operators.Proc. Am. Math. Soc. 145 (2017), 1981-1995. Zbl 1392.16032, MR 3611314, 10.1090/proc/13395
Reference: [3] Baxter, R. J.: Partition function of the eight-vertex lattice model.Ann. Phys. 70 (1972), 193-228. Zbl 0236.60070, MR 0290733, 10.1016/0003-4916(72)90335-1
Reference: [4] Bespalov, Y.: Crossed modules and quantum groups in braided categories.Appl. Categ. Struct. 5 (1997), 155-204. Zbl 0881.18010, MR 1456522, 10.1023/A:1008674524341
Reference: [5] Blattner, B. J., Cohen, M., Montgomery, S.: Crossed products and inner actions of Hopf algebras.Trans. Am. Math. Soc. 298 (1986), 671-711. Zbl 0619.16004, MR 0860387, 10.1090/S0002-9947-1986-0860387-X
Reference: [6] Brzeziński, T.: Trusses: Between braces and rings.Trans. Am. Math. Soc. 372 (2019), 4149-4176. Zbl 1471.16053, MR 4009388, 10.1090/tran/7705
Reference: [7] Drinfel'd, V. G.: Quantum groups.Proceedings of the International Congress of Mathematicians, Vol. 1, 2 AMS, Providence (1987), 798-820. Zbl 0667.16003, MR 0934283
Reference: [8] Drinfel'd, V. G.: On some unsolved problems in quantum group theory.Quantum Groups Lecture Notes in Mathematics 1510. Springer, Berlin (1992), 1-8. Zbl 0765.17014, MR 1183474, 10.1007/BFb0101175
Reference: [9] Etingof, P., Schedler, T., Soloviev, A.: Set-theoretical solutions to the quantum Yang-Baxter equation.Duke Math. J. 100 (1999), 169-209. Zbl 0969.81030, MR 1722951, 10.1215/S0012-7094-99-10007-X
Reference: [10] Vilaboa, J. M. Fernández, Rodríguez, R. González, Pérez, B. Ramos: Categorical isomorphisms for Hopf braces.(to appear) in Hacet. J. Math. Stat 25 pages. https://doi.org/10.15672/hujms.1511335
Reference: [11] Vilaboa, J. M. Fernández, Rodríguez, R. González, Pérez, B. Ramos, Raposo, A. B. Rodríguez: Projections of Hopf braces.Commun. Algebra 53 (2025), 3008-3045. MR 4898737, 10.1080/00927872.2025.2452345
Reference: [12] Gateva-Ivanova, T.: A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation.J. Math. Phys. 45 (2004), 3828-3858. Zbl 1065.16037, MR 2095675, 10.1063/1.1788848
Reference: [13] Goncharov, M.: Rota-Baxter operators on cocommutative Hopf algebras.J. Algebra 582 (2021), 39-56. Zbl 1505.17012, MR 4256904, 10.1016/j.jalgebra.2021.04.024
Reference: [14] Rodríguez, R. González: The fundamental theorem of Hopf modules for Hopf braces.Linear Multilinear Algebra 70 (2022), 5146-5156. Zbl 1504.18015, MR 4525211, 10.1080/03081087.2021.1904814
Reference: [15] Rodríguez, R. González, Raposo, A. B. Rodríguez: Categorical equivalences for Hopf trusses and their modules.Available at https://arxiv.org/abs/2312.06520 (2023), 19 pages. 10.48550/arXiv.2312.06520
Reference: [16] Guarnieri, L., Vendramin, L.: Skew braces and the Yang-Baxter equation.Math. Comput. 86 (2017), 2519-2534. Zbl 1371.16037, MR 3647970, 10.1090/mcom/3161
Reference: [17] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155. Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [18] Li, Y., Sheng, Y., Tang, R.: Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation.J. Noncommut. Geom. 18 (2024), 605-630. Zbl 07828328, MR 4721043, 10.4171/jncg/537
Reference: [19] Majid, S.: Cross products by braided groups and bosonization.J. Algebra 163 (1994), 165-190. Zbl 0807.16036, MR 1257312, 10.1006/jabr.1994.1011
Reference: [20] Radford, D. E.: The structure of Hopf algebras with a projection.J. Algebra 92 (1985), 322-347. Zbl 0549.16003, MR 0778452, 10.1016/0021-8693(85)90124-3
Reference: [21] Rump, W.: Braces, radical rings, and the quantum Yang-Baxter equation.J. Algebra 307 (2007), 153-170. Zbl 1115.16022, MR 2278047, 10.1016/j.jalgebra.2006.03.040
Reference: [22] Schauenburg, P.: On the braiding on a Hopf algebra in a braided category.New York J. Math. 4 (1998), 259-263. Zbl 0914.16017, MR 1656075
Reference: [23] Sweedler, M. E.: Hopf Algebras.W. A. Benjamin, New York (1969). Zbl 0194.32901, MR 0252485
Reference: [24] Yang, C. N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction.Phys. Rev. Lett. 19 (1967), 1312-1315. Zbl 0152.46301, MR 0261870, 10.1103/PhysRevLett.19.1312
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo