Previous |  Up |  Next

Article

Title: On $w$-universal injective modules and their applications in commutative rings (English)
Author: Zhou, Dechuan
Author: Kim, Hwankoo
Author: Zhao, Wei
Author: Hu, Kui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 915-932
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring and $w$ be the $w$-operation on $R$. We introduce the concept of $w$-universal injective modules and establish their fundamental properties. It is shown that the product of $E(R/{\frak m})$, where ${\frak m}$ ranges over maximal $w$-ideals of $R$, is a \hbox {$w$-universal} injective $w$-module over $R$, albeit not necessarily a universal injective \hbox {$R$-module}. As applications, we characterize $w$-IF rings and $w$-coherent rings using $w$-universal injective modules. Specifically, we demonstrate that $R$ is a $w$-IF ring if and only if $R$ is $w$-coherent and $E(R/{\frak m})$ is a flat $R$-module for every ${\frak m} \in w \text {-Max}(R)$. These results extend existing results and provide deeper insights into the structure of $w$-modules. (English)
Keyword: $w$-universal injective
Keyword: $w$-flat module
Keyword: $w$-IF ring
Keyword: $w$-coherent ring
MSC: 13A15
MSC: 13C99
DOI: 10.21136/CMJ.2025.0503-24
.
Date available: 2025-09-19T11:57:36Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153058
.
Reference: [1] Kim, H.: Module-theoretic characterizations of $t$-linkative domains.Commun. Algebra 36 (2008), 1649-1670. Zbl 1146.13001, MR 2420087, 10.1080/00927870701872513
Reference: [2] Matlis, E.: Reflexive domains.J. Algebra 8 (1968), 1-33. Zbl 0191.32301, MR 0220713, 10.1016/0021-8693(68)90031-8
Reference: [3] Matlis, E.: Commutative coherent rings.Can. J. Math. 34 (1982), 1240-1244. Zbl 0518.13011, MR 0678666, 10.4153/CJM-1982-085-2
Reference: [4] Matlis, E.: Commutative semi-coherent and semi-regular rings.J. Algebra 95 (1985), 343-372. Zbl 0596.13014, MR 0801272, 10.1016/0021-8693(85)90108-5
Reference: [5] Wang, F.: Finitely presented type modules and $w$-coherent rings.J. Sichuan Normal Univ., Nat. Sci. 33 (2010), 1-9 Chinese. Zbl 1240.13021, 10.3969/j.issn.1001-8395.2010.01.001
Reference: [6] Wang, F., Kim, H.: Foundations of Commutative Rings and Their Modules.Algebra and Applications 22. Springer, Singapore (2016). Zbl 1367.13001, MR 3587977, 10.1007/978-981-10-3337-7
Reference: [7] Wang, F., Kim, H.: Relative FP-injective modules and relative IF rings.Commun. Algebra 49 (2021), 3552-3582. Zbl 1510.13004, MR 4283167, 10.1080/00927872.2021.1900861
Reference: [8] Wang, F., Qiao, L.: A homological characterization of Krull domains. II.Commun. Algebra 47 (2019), 1917-1929. Zbl 1437.13029, MR 3977710, 10.1080/00927872.2018.1524007
Reference: [9] Wang, F., Qiao, L.: Two applications of Nagata rings and modules.J. Algebra Appl. 19 (2020), Article ID 2050115, 15 pages. Zbl 1440.13069, MR 4120092, 10.1142/S0219498820501157
Reference: [10] Yin, H., Wang, F., Zhu, X., Chen, Y.: $w$-modules over commutative rings.J. Korean Math. Soc. 48 (2011), 207-222. Zbl 1206.13005, MR 2778002, 10.4134/JKMS.2011.48.1.207
Reference: [11] Zhang, X., Wang, F.: On characterizations of $w$-coherent rings. II.Commun. Algebra 49 (2021), 3926-3940. Zbl 1478.13016, MR 4290119, 10.1080/00927872.2021.1909607
Reference: [12] Zhang, X., Wang, F., Qi, W.: On characterizations of $w$-coherent rings.Commun. Algebra 48 (2020), 4681-4697. Zbl 1448.13020, MR 4142066, 10.1080/00927872.2020.1769121
Reference: [13] Zhou, D. C., Wang, F. G.: The direct and inverse limits of $w$-modules.Commun. Algebra 44 (2016), 2495-2500. Zbl 1347.13006, MR 3492169, 10.1080/00927872.2015.1053907
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo