Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
maximal non-$\phi $-Mori ring; maximal non-Mori ring; normal pair
Summary:
Let $\mathcal {H}$ be the set of all commutative rings with unity whose nilradical is a divided prime ideal. The concept of maximal non-$\phi $-Mori subrings of a ring is introduced to generalize the concept of maximal non-Mori subrings of domain. A proper subring $R$ of a ring $T\in \mathcal {H}$ is called a maximal non-$\phi $-Mori subring if $R$ is not a $\phi $-Mori ring but each subring of $T$ properly containing $R$ is a $\phi $-Mori ring.
References:
[1] Subaiei, B. Al, Jarboui, N.: On the commutative ring extensions with at most two non Prüfer intermediate rings. Mediterr. J. Math. 18 (2021), Article ID 132, 19 pages. DOI 10.1007/s00009-021-01776-8 | MR 4258884 | Zbl 1466.13009
[2] Anderson, D. F., Badawi, A.: On $\phi$-Prüfer rings and $\phi$-Bezout rings. Houston J. Math. 30 (2004), 331-343. MR 2084906 | Zbl 1089.13513
[3] Anderson, D. F., Badawi, A.: On $\phi$-Dedekind rings and $\phi$-Krull rings. Houston J. Math. 31 (2005), 1007-1022. MR 2175419 | Zbl 1094.13030
[4] Anderson, D. D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381 | Zbl 1194.13002
[5] Ayache, A., Nasr, M. Ben, Jarboui, N.: PID pairs of rings and maximal non-PID subrings. Math. Z. 268 (2011), 635-647. DOI 10.1007/s00209-010-0687-4 | MR 2818722 | Zbl 1226.13008
[6] Ayache, A., Dobbs, D. E., Echi, O.: On maximal non-ACCP subrings. J. Algebra Appl. 6 (2007), 873-894. DOI 10.1142/S0219498807002545 | MR 2355625 | Zbl 1154.13007
[7] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. DOI 10.1007/PL00004598 | MR 1451331 | Zbl 0868.13007
[8] Ayache, A., Jarboui, N.: Maximal non-Noetherian subrings of a domain. J. Algebra 248 (2002), 806-823. DOI 10.1006/jabr.2001.9045 | MR 1882125 | Zbl 1095.13539
[9] Badawi, A.: On divided commutative rings. Commun. Algebra 27 (1999), 1465-1474. DOI 10.1080/00927879908826507 | MR 1669131 | Zbl 0923.13001
[10] Badawi, A.: On $\phi$-pseudo-valuation rings. Advances in Commutative Ring Theory Lecture Notes in Pure and Applied Mathematics 205. Marcel Dekker, New York (1999), 101-110. DOI 10.1201/9781003419815-7 | MR 1767453 | Zbl 0962.13018
[11] Badawi, A.: On $\phi$-pseudo-valuation rings. II. Houston J. Math. 26 (2000), 473-480. MR 1811935 | Zbl 0972.13004
[12] Badawi, A.: On $\phi$-chained rings and $\phi$-pseudo-valuation rings. Houston J. Math. 27 (2001), 725-736. MR 1874667 | Zbl 1006.13004
[13] Badawi, A.: On divided rings and $\phi$-pseudo-valuation rings. Commutative Rings Nova Science Publishers, Hauppauge (2002), 5-14. MR 2037654
[14] Badawi, A.: On nonnil-Noetherian rings. Commun. Algebra 31 (2003), 1669-1677. DOI 10.1081/AGB-120018502 | MR 1972886 | Zbl 1018.13010
[15] Badawi, A.: Factoring nonnil ideals into prime and invertible ideals. Bull. Lond. Math. Soc. 37 (2005), 665-672. DOI 10.1112/S0024609305004509 | MR 2164828 | Zbl 1092.13022
[16] Badawi, A., Jaballah, A.: Some finiteness conditions on the set of overrings of a $\phi$-ring. Houston J. Math. 34 (2008), 397-408. MR 2417400 | Zbl 1143.13010
[17] Badawi, A., Lucas, T. G.: Rings with prime nilradical. Arithmetical Properties of Commutative Rings and Monoids Lecture Notes in Pure and Applied Mathematics 241. Chapman & Hall/CRC, Boca Raton (2005), 198-212. DOI 10.1201/9781420028249.ch11 | MR 2140694 | Zbl 1096.13001
[18] Badawi, A., Lucas, T. G.: On $\phi$-Mori rings. Houston J. Math. 32 (2006), 1-32. MR 2202350 | Zbl 1101.13031
[19] Nasr, M. Ben, Jarboui, N.: Maximal non-Jaffard subrings of a field. Publ. Math., Barc. 44 (2000), 157-175. DOI 10.5565/PUBLMAT_44100_05 | MR 1775744 | Zbl 0976.13007
[20] Nasr, M. Ben, Jarboui, N.: On maximal non-valuation subrings. Houston J. Math. 37 (2011), 47-59. MR 2786545 | Zbl 1222.13007
[21] Davis, E. D.: Overrings of commutative rings. III: Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. DOI 10.1090/S0002-9947-1973-0325599-3 | MR 0325599 | Zbl 0272.13004
[22] Dobbs, D. E.: Divided rings and going-down. Pac. J. Math. 67 (1976), 353-363. DOI 10.2140/pjm.1976.67.353 | MR 0424795 | Zbl 0326.13002
[23] Ferrand, D., Olivier, J.-P.: Homomorphismes minimaux d'anneaux. J. Algebra 16 (1970), 461-471 French. DOI 10.1016/0021-8693(70)90020-7 | MR 0271079 | Zbl 0218.13011
[24] Fontana, M.: Topologically defined classes of commutative rings. Ann. Mat. Pura Appl., IV. Ser. 123 (1980), 331-355. DOI 10.1007/BF01796550 | MR 0581935 | Zbl 0443.13001
[25] Gaur, A., Kumar, R.: Maximal non $\phi$-chained rings and maximal non chained rings. Result. Math. 74 (2019), Article ID 121, 18 pages. DOI 10.1007/s00025-019-1043-6 | MR 3958783 | Zbl 1420.13018
[26] Gaur, A., Kumar, R.: Maximal non-Prüfer and maximal non-$\phi$-Prüfer rings. Commun. Algebra 50 (2022), 1613-1631. DOI 10.1080/00927872.2021.1986517 | MR 4391512 | Zbl 1482.13015
[27] Gaur, A., Kumar, R.: A question about maximal non $\phi$-chained subrings. Commun. Korean Math. Soc. 38 (2023), 11-19. DOI 10.4134/CKMS.c210272 | MR 4542616 | Zbl 1522.13014
[28] Gaur, A., Kumar, R.: Maximal non-valuative domains. Proc. Indian Acad. Sci., Math. Sci. 134 (2024), Article ID 13, 12 pages. DOI 10.1007/s12044-024-00781-7 | MR 4732439 | Zbl 1541.13007
[29] Gaur, A., Kumar, R., Singh, A.: Almost $\phi$-integrally closed rings. Commun. Algebra 52 (2024), 960-968. DOI 10.1080/00927872.2023.2255270 | MR 4710097 | Zbl 1540.13012
[30] Griffin, M.: Prüfer rings with zero divisors. J. Reine Angew. Math. 239-240 (1969), 55-67. DOI 10.1515/crll.1969.239-240.55 | MR 0255527 | Zbl 0185.09801
[31] Jarboui, N.: A question about maximal non-valuation subrings. Ric. Mat. 58 (2009), 145-152. DOI 10.1007/s11587-009-0053-1 | MR 2570583 | Zbl 1183.13002
[32] Jarboui, N., Toumi, M. El Islam: Characterizing maximal non-Mori subrings of an integral domain. Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 1545-1557. DOI 10.1007/s40840-015-0150-0 | MR 3712570 | Zbl 1375.13008
[33] Kim, H., Kumar, R.: A generalization of conducive domains. Bull. Korean Math. Soc. 61 (2024), 1593-1605. DOI 10.4134/BKMS.b230656 | MR 4832339 | Zbl 07960158
[34] Kumar, R.: Maximal non-nonnil-principal ideal rings. J. Algebra Appl 24 (2024), Article ID 2550254, 18 pages. DOI 10.1142/S0219498825502548 | MR 4909012 | Zbl 8051874
[35] Kumar, R.: Maximal non-pseudovaluation subrings of an integral domain. Czech. Math. J. 74 (2024), 389-395. DOI 10.21136/CMJ.2024.0122-23 | MR 4764529 | Zbl 07893388
[36] Kumar, R., Gaur, A.: $\lambda$-rings, $\phi$-$\lambda$-rings, and $\phi$-$\Delta$-rings. Filomat 33 (2019), 5125-5134. DOI 10.2298/FIL1916125K | MR 4051695 | Zbl 1499.13036
[37] Kumar, R., Gaur, A.: Maximal non $\lambda$-subrings. Czech. Math. J. 70 (2020), 323-337. DOI 10.21136/CMJ.2019.0298-18 | MR 4111846 | Zbl 1513.13019
[38] Kumar, R., Gaur, A.: Maximal non valuation domains in an integral domain. Czech. Math. J. 70 (2020), 1019-1032. DOI 10.21136/CMJ.2020.0098-19 | MR 4181793 | Zbl 1524.13034
[39] Kumar, R., Gaur, A.: A note on $\phi$-$\lambda$-rings and $\phi$-$\Delta$-rings. Rend. Circ. Mat. Palermo (2) 70 (2021), 1657-1667. DOI 10.1007/s12215-020-00580-9 | MR 4326035 | Zbl 1475.13014
[40] Kumar, R., Gaur, A.: A note on pairs of rings with the same prime ideals. Hiroshima Math. J. 52 (2022), 103-112. DOI 10.32917/h2021037 | MR 4399943 | Zbl 1485.13007
[41] Kumar, R., Gaur, A.: Maximal non-$\phi$-pseudo-valuation rings. J. Algebra Appl. 21 (2022), Article ID 2250090, 13 pages. DOI 10.1142/S0219498822500906 | MR 4406637 | Zbl 1484.13016
[42] Kumar, R., Gaur, A., Singh, A.: Comparable overrings of a commutative ring. Beitr. Algebra Geom. 66 (2025), 61-78. DOI 10.1007/s13366-023-00724-9 | MR 4883698 | Zbl 08022273
[43] Nagata, M.: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13. John Wiley & Sons, New York (1962). MR 0155856 | Zbl 0123.03402
Partner of
EuDML logo