Previous |  Up |  Next

Article

Title: Maximal non-$\phi $-Mori subrings of a ring (English)
Author: Kumar, Rahul
Author: Singh, Anant
Author: Gaur, Atul
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 943-953
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {H}$ be the set of all commutative rings with unity whose nilradical is a divided prime ideal. The concept of maximal non-$\phi $-Mori subrings of a ring is introduced to generalize the concept of maximal non-Mori subrings of domain. A proper subring $R$ of a ring $T\in \mathcal {H}$ is called a maximal non-$\phi $-Mori subring if $R$ is not a $\phi $-Mori ring but each subring of $T$ properly containing $R$ is a $\phi $-Mori ring. (English)
Keyword: maximal non-$\phi $-Mori ring
Keyword: maximal non-Mori ring
Keyword: normal pair
MSC: 13A18
MSC: 13B22
MSC: 13B99
DOI: 10.21136/CMJ.2025.0506-24
.
Date available: 2025-09-19T11:58:33Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153060
.
Reference: [1] Subaiei, B. Al, Jarboui, N.: On the commutative ring extensions with at most two non Prüfer intermediate rings.Mediterr. J. Math. 18 (2021), Article ID 132, 19 pages. Zbl 1466.13009, MR 4258884, 10.1007/s00009-021-01776-8
Reference: [2] Anderson, D. F., Badawi, A.: On $\phi$-Prüfer rings and $\phi$-Bezout rings.Houston J. Math. 30 (2004), 331-343. Zbl 1089.13513, MR 2084906
Reference: [3] Anderson, D. F., Badawi, A.: On $\phi$-Dedekind rings and $\phi$-Krull rings.Houston J. Math. 31 (2005), 1007-1022. Zbl 1094.13030, MR 2175419
Reference: [4] Anderson, D. D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3-56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3
Reference: [5] Ayache, A., Nasr, M. Ben, Jarboui, N.: PID pairs of rings and maximal non-PID subrings.Math. Z. 268 (2011), 635-647. Zbl 1226.13008, MR 2818722, 10.1007/s00209-010-0687-4
Reference: [6] Ayache, A., Dobbs, D. E., Echi, O.: On maximal non-ACCP subrings.J. Algebra Appl. 6 (2007), 873-894. Zbl 1154.13007, MR 2355625, 10.1142/S0219498807002545
Reference: [7] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings.Math. Z. 225 (1997), 49-65. Zbl 0868.13007, MR 1451331, 10.1007/PL00004598
Reference: [8] Ayache, A., Jarboui, N.: Maximal non-Noetherian subrings of a domain.J. Algebra 248 (2002), 806-823. Zbl 1095.13539, MR 1882125, 10.1006/jabr.2001.9045
Reference: [9] Badawi, A.: On divided commutative rings.Commun. Algebra 27 (1999), 1465-1474. Zbl 0923.13001, MR 1669131, 10.1080/00927879908826507
Reference: [10] Badawi, A.: On $\phi$-pseudo-valuation rings.Advances in Commutative Ring Theory Lecture Notes in Pure and Applied Mathematics 205. Marcel Dekker, New York (1999), 101-110. Zbl 0962.13018, MR 1767453, 10.1201/9781003419815-7
Reference: [11] Badawi, A.: On $\phi$-pseudo-valuation rings. II.Houston J. Math. 26 (2000), 473-480. Zbl 0972.13004, MR 1811935
Reference: [12] Badawi, A.: On $\phi$-chained rings and $\phi$-pseudo-valuation rings.Houston J. Math. 27 (2001), 725-736. Zbl 1006.13004, MR 1874667
Reference: [13] Badawi, A.: On divided rings and $\phi$-pseudo-valuation rings.Commutative Rings Nova Science Publishers, Hauppauge (2002), 5-14. MR 2037654
Reference: [14] Badawi, A.: On nonnil-Noetherian rings.Commun. Algebra 31 (2003), 1669-1677. Zbl 1018.13010, MR 1972886, 10.1081/AGB-120018502
Reference: [15] Badawi, A.: Factoring nonnil ideals into prime and invertible ideals.Bull. Lond. Math. Soc. 37 (2005), 665-672. Zbl 1092.13022, MR 2164828, 10.1112/S0024609305004509
Reference: [16] Badawi, A., Jaballah, A.: Some finiteness conditions on the set of overrings of a $\phi$-ring.Houston J. Math. 34 (2008), 397-408. Zbl 1143.13010, MR 2417400
Reference: [17] Badawi, A., Lucas, T. G.: Rings with prime nilradical.Arithmetical Properties of Commutative Rings and Monoids Lecture Notes in Pure and Applied Mathematics 241. Chapman & Hall/CRC, Boca Raton (2005), 198-212. Zbl 1096.13001, MR 2140694, 10.1201/9781420028249.ch11
Reference: [18] Badawi, A., Lucas, T. G.: On $\phi$-Mori rings.Houston J. Math. 32 (2006), 1-32. Zbl 1101.13031, MR 2202350
Reference: [19] Nasr, M. Ben, Jarboui, N.: Maximal non-Jaffard subrings of a field.Publ. Math., Barc. 44 (2000), 157-175. Zbl 0976.13007, MR 1775744, 10.5565/PUBLMAT_44100_05
Reference: [20] Nasr, M. Ben, Jarboui, N.: On maximal non-valuation subrings.Houston J. Math. 37 (2011), 47-59. Zbl 1222.13007, MR 2786545
Reference: [21] Davis, E. D.: Overrings of commutative rings. III: Normal pairs.Trans. Am. Math. Soc. 182 (1973), 175-185. Zbl 0272.13004, MR 0325599, 10.1090/S0002-9947-1973-0325599-3
Reference: [22] Dobbs, D. E.: Divided rings and going-down.Pac. J. Math. 67 (1976), 353-363. Zbl 0326.13002, MR 0424795, 10.2140/pjm.1976.67.353
Reference: [23] Ferrand, D., Olivier, J.-P.: Homomorphismes minimaux d'anneaux.J. Algebra 16 (1970), 461-471 French. Zbl 0218.13011, MR 0271079, 10.1016/0021-8693(70)90020-7
Reference: [24] Fontana, M.: Topologically defined classes of commutative rings.Ann. Mat. Pura Appl., IV. Ser. 123 (1980), 331-355. Zbl 0443.13001, MR 0581935, 10.1007/BF01796550
Reference: [25] Gaur, A., Kumar, R.: Maximal non $\phi$-chained rings and maximal non chained rings.Result. Math. 74 (2019), Article ID 121, 18 pages. Zbl 1420.13018, MR 3958783, 10.1007/s00025-019-1043-6
Reference: [26] Gaur, A., Kumar, R.: Maximal non-Prüfer and maximal non-$\phi$-Prüfer rings.Commun. Algebra 50 (2022), 1613-1631. Zbl 1482.13015, MR 4391512, 10.1080/00927872.2021.1986517
Reference: [27] Gaur, A., Kumar, R.: A question about maximal non $\phi$-chained subrings.Commun. Korean Math. Soc. 38 (2023), 11-19. Zbl 1522.13014, MR 4542616, 10.4134/CKMS.c210272
Reference: [28] Gaur, A., Kumar, R.: Maximal non-valuative domains.Proc. Indian Acad. Sci., Math. Sci. 134 (2024), Article ID 13, 12 pages. Zbl 1541.13007, MR 4732439, 10.1007/s12044-024-00781-7
Reference: [29] Gaur, A., Kumar, R., Singh, A.: Almost $\phi$-integrally closed rings.Commun. Algebra 52 (2024), 960-968. Zbl 1540.13012, MR 4710097, 10.1080/00927872.2023.2255270
Reference: [30] Griffin, M.: Prüfer rings with zero divisors.J. Reine Angew. Math. 239-240 (1969), 55-67. Zbl 0185.09801, MR 0255527, 10.1515/crll.1969.239-240.55
Reference: [31] Jarboui, N.: A question about maximal non-valuation subrings.Ric. Mat. 58 (2009), 145-152. Zbl 1183.13002, MR 2570583, 10.1007/s11587-009-0053-1
Reference: [32] Jarboui, N., Toumi, M. El Islam: Characterizing maximal non-Mori subrings of an integral domain.Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 1545-1557. Zbl 1375.13008, MR 3712570, 10.1007/s40840-015-0150-0
Reference: [33] Kim, H., Kumar, R.: A generalization of conducive domains.Bull. Korean Math. Soc. 61 (2024), 1593-1605. Zbl 07960158, MR 4832339, 10.4134/BKMS.b230656
Reference: [34] Kumar, R.: Maximal non-nonnil-principal ideal rings.J. Algebra Appl 24 (2024), Article ID 2550254, 18 pages. Zbl 8051874, MR 4909012, 10.1142/S0219498825502548
Reference: [35] Kumar, R.: Maximal non-pseudovaluation subrings of an integral domain.Czech. Math. J. 74 (2024), 389-395. Zbl 07893388, MR 4764529, 10.21136/CMJ.2024.0122-23
Reference: [36] Kumar, R., Gaur, A.: $\lambda$-rings, $\phi$-$\lambda$-rings, and $\phi$-$\Delta$-rings.Filomat 33 (2019), 5125-5134. Zbl 1499.13036, MR 4051695, 10.2298/FIL1916125K
Reference: [37] Kumar, R., Gaur, A.: Maximal non $\lambda$-subrings.Czech. Math. J. 70 (2020), 323-337. Zbl 1513.13019, MR 4111846, 10.21136/CMJ.2019.0298-18
Reference: [38] Kumar, R., Gaur, A.: Maximal non valuation domains in an integral domain.Czech. Math. J. 70 (2020), 1019-1032. Zbl 1524.13034, MR 4181793, 10.21136/CMJ.2020.0098-19
Reference: [39] Kumar, R., Gaur, A.: A note on $\phi$-$\lambda$-rings and $\phi$-$\Delta$-rings.Rend. Circ. Mat. Palermo (2) 70 (2021), 1657-1667. Zbl 1475.13014, MR 4326035, 10.1007/s12215-020-00580-9
Reference: [40] Kumar, R., Gaur, A.: A note on pairs of rings with the same prime ideals.Hiroshima Math. J. 52 (2022), 103-112. Zbl 1485.13007, MR 4399943, 10.32917/h2021037
Reference: [41] Kumar, R., Gaur, A.: Maximal non-$\phi$-pseudo-valuation rings.J. Algebra Appl. 21 (2022), Article ID 2250090, 13 pages. Zbl 1484.13016, MR 4406637, 10.1142/S0219498822500906
Reference: [42] Kumar, R., Gaur, A., Singh, A.: Comparable overrings of a commutative ring.Beitr. Algebra Geom. 66 (2025), 61-78. Zbl 08022273, MR 4883698, 10.1007/s13366-023-00724-9
Reference: [43] Nagata, M.: Local Rings.Interscience Tracts in Pure and Applied Mathematics 13. John Wiley & Sons, New York (1962). Zbl 0123.03402, MR 0155856
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo