Previous |  Up |  Next

Article

Title: Non-injective inductions and restrictions of modules over finite groups (English)
Author: Li, Conghui
Author: Tian, Yuting
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 933-942
Summary lang: English
.
Category: math
.
Summary: We extend the inductions and restrictions of modules over finite groups to non-injective group homomorphisms, establishing transitivity, Frobenius reciprocity, Mackey's formula, etc. (English)
Keyword: non-injective homomorphism
Keyword: induction and restriction
Keyword: Frobenius reciprocity
Keyword: Mackey's formula
MSC: 20C20
DOI: 10.21136/CMJ.2025.0505-24
.
Date available: 2025-09-19T11:57:59Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153059
.
Reference: [1] Agore, A.: A First Course in Category Theory.Universitext. Springer, Cham (2023). Zbl 1531.18001, MR 4696829, 10.1007/978-3-031-42899-9
Reference: [2] Linckelmann, M.: Induction for interior algebras.Q. J. Math. 53 (2002), 195-200. Zbl 1011.20006, MR 1909511, 10.1093/qjmath/53.2.195
Reference: [3] Linckelmann, M.: The Block Theory of Finite Group Algebras. I.London Mathematical Society Student Texts 91. Cambridge University Press, Cambridge (2018). Zbl 1515.20015, MR 3821516, 10.1017/9781108349321
Reference: [4] Puig, L.: Pointed groups and construction of characters.Math. Z. 176 (1981), 265-292. Zbl 0464.20007, MR 0607966, 10.1007/BF01261873
Reference: [5] Puig, L.: On the Local Structure of Morita and Rickard Equivalences Between Brauer Blocks.Progress in Mathematics 178. Birkhäuser, Basel (1999). Zbl 0929.20012, MR 1707300, 10.1007/978-3-0348-8693-2
Reference: [6] Webb, P.: A Course in Finite Group Representation Theory.Cambridge Studies in Advanced Mathematics 161. Cambridge University Press, Cambridge (2016). Zbl 1371.20002, MR 3617363, 10.1017/CBO9781316677216
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo