[10] Hashimoto, D., Sawano, Y., Shimomura, T.:
Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces. Colloq. Math. 161 (2020), 51-66.
DOI 10.4064/cm7535-4-2019 |
MR 4085112 |
Zbl 1464.46043
[17] Mizuta, Y., Shimomura, T., Sobukawa, T.:
Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), 255-271.
MR 2531149 |
Zbl 1186.31003
[23] Ohno, T., Shimomura, T.:
Trudinger-type inequalities for variable Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over metric measure spaces. Math. Nachr. 297 (2024), 1248-1274.
DOI 10.1002/mana.202300265 |
MR 4734972 |
Zbl 1550.46032
[24] Ohno, T., Shimomura, T.:
Boundedness of maximal operators and Sobolev inequalities on Musielak-Orlicz spaces over unbounded metric measure spaces. Bull. Sci. Math. 199 (2025), Article ID 103546, 47 pages.
DOI 10.1016/j.bulsci.2024.103546 |
MR 4837131 |
Zbl 07991347
[29] Sawano, Y., Shigematsu, M., Shimomura, T.:
Generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi;\kappa)}(G)$ over non-doubling measure spaces. Forum Math. 32 (2020), 339-359.
DOI 10.1515/forum-2019-0140 |
MR 4069939 |
Zbl 1436.42029
[31] Sawano, Y., Shimomura, T.:
Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces. Proc. Am. Math. Soc. 147 (2019), 2877-2885.
DOI 10.1090/proc/14225 |
MR 3973891 |
Zbl 1416.42025