Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
I-group; ring of inner automorphism of a group; nilpotent group; inner automorphism nearring
Summary:
For a finite group $G$, let $I(G)$ denote the set of all finite sums of inner automorphisms of $G$. When $I(G)$ forms a ring, $G$ is referred to as an I-group. It is known that if $G$ is an I-group, then it is nilpotent of class at most 3, and that $I(G)$ is a commutative ring if and only if $G$ is nilpotent of class at most 2. We characterize the ring $I(G)$ for an I-group $G$. Additionally, for cases where $I(G)$ is a commutative ring and $G$ is of order $p^{n}$ (with $p$ being a prime and $n=3$ or 4), as well as for orders $3^{5}$ and $3^{6}$, we determine the ring structure of $I(G)$.
References:
[1] Besche, H. U., Eick, B., O'Brien, E., Horn, M.: SmallGrp: The GAP Small Groups Library. Version 1.5.4. Available at https://gap-packages.github.io/smallgrp/ (2024).
[2] Burnside, W.: Theory of Groups of Finite Order. Cambridge University Press, Cambridge (1897),\99999JFM99999 28.0118.03. DOI 10.1017/CBO9781139237253
[3] Chandy, A. J.: Rings generated by the inner-automorphisms of nonabelian groups. Proc. Am. Math. Soc. 30 (1971), 59-60. DOI 10.1090/S0002-9939-1971-0280519-9 | MR 0280519 | Zbl 0218.16020
[4] Group, The GAP: GAP - A System for Computational Discrete Algebra. Version 4.13.1. Available at https://www.gap-system.org/ (2024).
[5] Levi, F. W.: Groups in which the commutator operation satisfies certain algebraic conditions. J. Indian Math. Soc., New Ser. 6 (1942), 87-97. MR 0007417 | Zbl 0061.02606
[6] Levi, F., Waerden, B. L. van der: Über eine besondere Klasse von Gruppen. Abh. Math. Semin. Hamb. Univ. 9 (1933), 154-158 German. DOI 10.1007/BF02940639 | MR 3069591 | Zbl 0005.38507
[7] Meldrum, J. D. P.: Near-Rings and their Links with Groups. Research Notes in Mathematics 134. Pitman, Boston (1985). MR 0854275 | Zbl 0658.16029
[8] Young, J. W. A.: On the determination of groups whose order is a power of a prime. Am. J. Math. 15 (1893), 124-178 \99999JFM99999 25.0201.01. DOI 10.2307/2369564 | MR 1505615
Partner of
EuDML logo