Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Wold-type decomposition; quasi-isometry; lifting
Summary:
This paper investigates the necessary and sufficient conditions under which a quasi-isometry $T$ on a Hilbert space ${\mathcal H}$ admits a Wold-type decomposition in Shimorin's sense. We establish a close connection between this decomposition and the kernel condition $T^*T {\mathcal N} (T^*)\subset {\mathcal N} (T^*)$, where ${\mathcal N}(T^*)$ is the kernel of the adjoint operator $T^*$ of $T$. Additionally, we discuss conditions related to certain cyclic and wandering subspaces, as well as the role of the Cauchy dual operator of $T$. Furthermore, we examine operators similar to contractions, that admit quasi-isometric liftings satisfying the kernel condition. This analysis leads to the identification of a special class of quasicontractions with such liftings, and on the other hand, to the construction of certain expansive quasi-isometric liftings $S_{\alpha }$ ($0<\alpha <1)$.
References:
[1] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert spaces. I. Integral Equations Oper. Theory 21 (1995), 383-429. DOI 10.1007/BF01222016 | MR 1321694 | Zbl 0836.47008
[2] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert spaces. II. Integral Equations Oper. Theory 23 (1995), 1-48. DOI 10.1007/BF01261201 | MR 1346617 | Zbl 0857.47011
[3] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert spaces. III. Integral Equations Oper. Theory 24 (1996), 379-421. DOI 10.1007/BF01191619 | MR 1382018 | Zbl 0871.47012
[4] Badea, C., Müller, V., Suciu, L.: High order isometric liftings and dilations. Stud. Math. 258 (2021), 87-101. DOI 10.4064/sm200330-25-8 | MR 4214355 | Zbl 1489.47001
[5] Badea, C., Suciu, L.: Hilbert space operators with two-isometric dilations. J. Oper. Theory 86 (2021), 93-123. DOI 10.7900/jot.2020feb05.2298 | MR 4272765 | Zbl 1524.47026
[6] Foias, C., Frazho, A. E.: The Commutant Lifting Approach to Interpolation Problems. Operator Theory: Advances and Applications 44. Birkhäuser, Basel (1990). DOI 10.1007/978-3-0348-7712-1 | MR 1120546 | Zbl 0718.47010
[7] Kośmider, J.: The Wold-type decomposition for $m$-isometries. Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 4155-4174. DOI 10.1007/s40840-021-01129-4 | MR 4321756 | Zbl 1487.47038
[8] Majdak, W., Suciu, L.: Brownian type parts of operators in Hilbert spaces. Result. Math. 75 (2020), Article ID 5, 23 pages. DOI 10.1007/s00025-019-1130-8 | MR 4040634 | Zbl 1437.47009
[9] Mbekhta, M., Suciu, L.: Classes of operators similar to partial isometries. Integral Equations Oper. Theory 63 (2009), 571-590. DOI 10.1007/s00020-009-1671-4 | MR 2497451 | Zbl 1197.47004
[10] Müller, V.: Models for operators using weighted shifts. J. Oper. Theory 20 (1988), 3-20. MR 0972177 | Zbl 0695.47008
[11] Shimorin, S.: Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew. Math. 531 (2001), 147-189. DOI 10.1515/crll.2001.013 | MR 1810120 | Zbl 0974.47014
[12] Suciu, L.: Operators with expansive $m$-isometric liftings. Monatsh. Math. 198 (2022), 165-187. DOI 10.1007/s00605-021-01648-z | MR 4412408 | Zbl 1506.47005
[13] Suciu, L.: Brownian type extensions for a class of $m$-isometries. Result. Math. 78 (2023), Article ID 144, 29 pages. DOI 10.1007/s00025-023-01917-3 | MR 4586942 | Zbl 07689536
[14] Suciu, L., Stoica, A.-M.: Left-invertible quasi-isometric liftings. Bull. Malays. Math. Sci. Soc. 48 (2025), 22 pages. DOI 10.1007/s40840-025-01920-7 | MR 4927789
[15] Suciu, L., Stoica, A.-M.: Quasi-isometric liftings for operators similar to contractions. Linear Algebra Appl. 709 (2025), 40-57. DOI 10.1016/j.laa.2025.01.006 | MR 4851940 | Zbl 07990846
[16] Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space. Universitext. Springer, New York (2010). DOI 10.1007/978-1-4419-6094-8 | MR 2760647 | Zbl 1234.47001
Partner of
EuDML logo