| Title: | The Wold-type decomposition and the kernel condition for quasi-isometries (English) |
| Author: | Stoica, Andra-Maria |
| Author: | Suciu, Laurian |
| Language: | English |
| Journal: | Czechoslovak Mathematical Journal |
| ISSN: | 0011-4642 (print) |
| ISSN: | 1572-9141 (online) |
| Volume: | 75 |
| Issue: | 3 |
| Year: | 2025 |
| Pages: | 1049-1072 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | This paper investigates the necessary and sufficient conditions under which a quasi-isometry $T$ on a Hilbert space ${\mathcal H}$ admits a Wold-type decomposition in Shimorin's sense. We establish a close connection between this decomposition and the kernel condition $T^*T {\mathcal N} (T^*)\subset {\mathcal N} (T^*)$, where ${\mathcal N}(T^*)$ is the kernel of the adjoint operator $T^*$ of $T$. Additionally, we discuss conditions related to certain cyclic and wandering subspaces, as well as the role of the Cauchy dual operator of $T$. Furthermore, we examine operators similar to contractions, that admit quasi-isometric liftings satisfying the kernel condition. This analysis leads to the identification of a special class of quasicontractions with such liftings, and on the other hand, to the construction of certain expansive quasi-isometric liftings $S_{\alpha }$ ($0<\alpha <1)$. (English) |
| Keyword: | Wold-type decomposition |
| Keyword: | quasi-isometry |
| Keyword: | lifting |
| MSC: | 47A05 |
| MSC: | 47A15 |
| MSC: | 47A20 |
| MSC: | 47A63 |
| DOI: | 10.21136/CMJ.2025.0071-25 |
| . | |
| Date available: | 2025-09-19T12:09:45Z |
| Last updated: | 2025-09-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153066 |
| . | |
| Reference: | [1] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert spaces. I.Integral Equations Oper. Theory 21 (1995), 383-429. Zbl 0836.47008, MR 1321694, 10.1007/BF01222016 |
| Reference: | [2] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert spaces. II.Integral Equations Oper. Theory 23 (1995), 1-48. Zbl 0857.47011, MR 1346617, 10.1007/BF01261201 |
| Reference: | [3] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert spaces. III.Integral Equations Oper. Theory 24 (1996), 379-421. Zbl 0871.47012, MR 1382018, 10.1007/BF01191619 |
| Reference: | [4] Badea, C., Müller, V., Suciu, L.: High order isometric liftings and dilations.Stud. Math. 258 (2021), 87-101. Zbl 1489.47001, MR 4214355, 10.4064/sm200330-25-8 |
| Reference: | [5] Badea, C., Suciu, L.: Hilbert space operators with two-isometric dilations.J. Oper. Theory 86 (2021), 93-123. Zbl 1524.47026, MR 4272765, 10.7900/jot.2020feb05.2298 |
| Reference: | [6] Foias, C., Frazho, A. E.: The Commutant Lifting Approach to Interpolation Problems.Operator Theory: Advances and Applications 44. Birkhäuser, Basel (1990). Zbl 0718.47010, MR 1120546, 10.1007/978-3-0348-7712-1 |
| Reference: | [7] Kośmider, J.: The Wold-type decomposition for $m$-isometries.Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 4155-4174. Zbl 1487.47038, MR 4321756, 10.1007/s40840-021-01129-4 |
| Reference: | [8] Majdak, W., Suciu, L.: Brownian type parts of operators in Hilbert spaces.Result. Math. 75 (2020), Article ID 5, 23 pages. Zbl 1437.47009, MR 4040634, 10.1007/s00025-019-1130-8 |
| Reference: | [9] Mbekhta, M., Suciu, L.: Classes of operators similar to partial isometries.Integral Equations Oper. Theory 63 (2009), 571-590. Zbl 1197.47004, MR 2497451, 10.1007/s00020-009-1671-4 |
| Reference: | [10] Müller, V.: Models for operators using weighted shifts.J. Oper. Theory 20 (1988), 3-20. Zbl 0695.47008, MR 0972177 |
| Reference: | [11] Shimorin, S.: Wold-type decompositions and wandering subspaces for operators close to isometries.J. Reine Angew. Math. 531 (2001), 147-189. Zbl 0974.47014, MR 1810120, 10.1515/crll.2001.013 |
| Reference: | [12] Suciu, L.: Operators with expansive $m$-isometric liftings.Monatsh. Math. 198 (2022), 165-187. Zbl 1506.47005, MR 4412408, 10.1007/s00605-021-01648-z |
| Reference: | [13] Suciu, L.: Brownian type extensions for a class of $m$-isometries.Result. Math. 78 (2023), Article ID 144, 29 pages. Zbl 07689536, MR 4586942, 10.1007/s00025-023-01917-3 |
| Reference: | [14] Suciu, L., Stoica, A.-M.: Left-invertible quasi-isometric liftings.Bull. Malays. Math. Sci. Soc. 48 (2025), 22 pages. MR 4927789, 10.1007/s40840-025-01920-7 |
| Reference: | [15] Suciu, L., Stoica, A.-M.: Quasi-isometric liftings for operators similar to contractions.Linear Algebra Appl. 709 (2025), 40-57. Zbl 07990846, MR 4851940, 10.1016/j.laa.2025.01.006 |
| Reference: | [16] Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space.Universitext. Springer, New York (2010). Zbl 1234.47001, MR 2760647, 10.1007/978-1-4419-6094-8 |
| . |
Fulltext not available (moving wall 24 months)