Previous |  Up |  Next

Article

Title: The Wold-type decomposition and the kernel condition for quasi-isometries (English)
Author: Stoica, Andra-Maria
Author: Suciu, Laurian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 1049-1072
Summary lang: English
.
Category: math
.
Summary: This paper investigates the necessary and sufficient conditions under which a quasi-isometry $T$ on a Hilbert space ${\mathcal H}$ admits a Wold-type decomposition in Shimorin's sense. We establish a close connection between this decomposition and the kernel condition $T^*T {\mathcal N} (T^*)\subset {\mathcal N} (T^*)$, where ${\mathcal N}(T^*)$ is the kernel of the adjoint operator $T^*$ of $T$. Additionally, we discuss conditions related to certain cyclic and wandering subspaces, as well as the role of the Cauchy dual operator of $T$. Furthermore, we examine operators similar to contractions, that admit quasi-isometric liftings satisfying the kernel condition. This analysis leads to the identification of a special class of quasicontractions with such liftings, and on the other hand, to the construction of certain expansive quasi-isometric liftings $S_{\alpha }$ ($0<\alpha <1)$. (English)
Keyword: Wold-type decomposition
Keyword: quasi-isometry
Keyword: lifting
MSC: 47A05
MSC: 47A15
MSC: 47A20
MSC: 47A63
DOI: 10.21136/CMJ.2025.0071-25
.
Date available: 2025-09-19T12:09:45Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153066
.
Reference: [1] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert spaces. I.Integral Equations Oper. Theory 21 (1995), 383-429. Zbl 0836.47008, MR 1321694, 10.1007/BF01222016
Reference: [2] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert spaces. II.Integral Equations Oper. Theory 23 (1995), 1-48. Zbl 0857.47011, MR 1346617, 10.1007/BF01261201
Reference: [3] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert spaces. III.Integral Equations Oper. Theory 24 (1996), 379-421. Zbl 0871.47012, MR 1382018, 10.1007/BF01191619
Reference: [4] Badea, C., Müller, V., Suciu, L.: High order isometric liftings and dilations.Stud. Math. 258 (2021), 87-101. Zbl 1489.47001, MR 4214355, 10.4064/sm200330-25-8
Reference: [5] Badea, C., Suciu, L.: Hilbert space operators with two-isometric dilations.J. Oper. Theory 86 (2021), 93-123. Zbl 1524.47026, MR 4272765, 10.7900/jot.2020feb05.2298
Reference: [6] Foias, C., Frazho, A. E.: The Commutant Lifting Approach to Interpolation Problems.Operator Theory: Advances and Applications 44. Birkhäuser, Basel (1990). Zbl 0718.47010, MR 1120546, 10.1007/978-3-0348-7712-1
Reference: [7] Kośmider, J.: The Wold-type decomposition for $m$-isometries.Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 4155-4174. Zbl 1487.47038, MR 4321756, 10.1007/s40840-021-01129-4
Reference: [8] Majdak, W., Suciu, L.: Brownian type parts of operators in Hilbert spaces.Result. Math. 75 (2020), Article ID 5, 23 pages. Zbl 1437.47009, MR 4040634, 10.1007/s00025-019-1130-8
Reference: [9] Mbekhta, M., Suciu, L.: Classes of operators similar to partial isometries.Integral Equations Oper. Theory 63 (2009), 571-590. Zbl 1197.47004, MR 2497451, 10.1007/s00020-009-1671-4
Reference: [10] Müller, V.: Models for operators using weighted shifts.J. Oper. Theory 20 (1988), 3-20. Zbl 0695.47008, MR 0972177
Reference: [11] Shimorin, S.: Wold-type decompositions and wandering subspaces for operators close to isometries.J. Reine Angew. Math. 531 (2001), 147-189. Zbl 0974.47014, MR 1810120, 10.1515/crll.2001.013
Reference: [12] Suciu, L.: Operators with expansive $m$-isometric liftings.Monatsh. Math. 198 (2022), 165-187. Zbl 1506.47005, MR 4412408, 10.1007/s00605-021-01648-z
Reference: [13] Suciu, L.: Brownian type extensions for a class of $m$-isometries.Result. Math. 78 (2023), Article ID 144, 29 pages. Zbl 07689536, MR 4586942, 10.1007/s00025-023-01917-3
Reference: [14] Suciu, L., Stoica, A.-M.: Left-invertible quasi-isometric liftings.Bull. Malays. Math. Sci. Soc. 48 (2025), 22 pages. MR 4927789, 10.1007/s40840-025-01920-7
Reference: [15] Suciu, L., Stoica, A.-M.: Quasi-isometric liftings for operators similar to contractions.Linear Algebra Appl. 709 (2025), 40-57. Zbl 07990846, MR 4851940, 10.1016/j.laa.2025.01.006
Reference: [16] Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space.Universitext. Springer, New York (2010). Zbl 1234.47001, MR 2760647, 10.1007/978-1-4419-6094-8
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo