| Title: | $(m,n)$-prime ideals of commutative rings (English) |
| Author: | Khashan, Hani A. |
| Author: | Yetkin Çelikel, Ece |
| Language: | English |
| Journal: | Czechoslovak Mathematical Journal |
| ISSN: | 0011-4642 (print) |
| ISSN: | 1572-9141 (online) |
| Volume: | 75 |
| Issue: | 3 |
| Year: | 2025 |
| Pages: | 1073-1091 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | Let $R$ be a commutative ring with identity and $m$, $n$ be positive integers. We introduce the class of $(m,n)$-prime ideals which lies properly between the classes of prime and $(m,n)$-closed ideals. A proper ideal $I$ of $R$ is called $(m,n)$-prime if for $a,b\in R$, $a^{m}b\in I$ implies either $a^{n}\in I$ or $b\in I.$ Several characterizations of this new class with many examples are given. Analogous to primary decomposition, we define the \hbox {$(m,n)$-decomposition} of ideals and show that every ideal in an $n$-Noetherian ring has an $(m,n)$-decomposition. Furthermore, the $(m,n)$-prime avoidance theorem is proved. (English) |
| Keyword: | $(m,n)$-prime ideal |
| Keyword: | $(m,n)$-closed ideal |
| Keyword: | $n$-absorbing ideal |
| Keyword: | avoidance theorem |
| MSC: | 13A15 |
| MSC: | 13F05 |
| DOI: | 10.21136/CMJ.2025.0090-25 |
| . | |
| Date available: | 2025-09-19T12:11:16Z |
| Last updated: | 2025-09-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153067 |
| . | |
| Reference: | [1] Anderson, D. F., Badawi, A.: On $n$-absorbing ideals of commutative rings.Commun. Algebra 39 (2011), 1646-1672. Zbl 1232.13001, MR 2821499, 10.1080/00927871003738998 |
| Reference: | [2] Anderson, D. F., Badawi, A.: On $(m,n)$-closed ideals of commutative rings.J. Algebra Appl. 16 (2017), Article ID 1750013, 21 pages. Zbl 1355.13004, MR 3590874, 10.1142/S021949881750013X |
| Reference: | [3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley, Reading (1969). Zbl 0175.03601, MR 0242802, 10.1201/9780429493638 |
| Reference: | [4] Badawi, A.: On 2-absorbing ideals of commutative rings.Bull. Aust. Math. Soc. 75 (2007), 417-429. Zbl 1120.13004, MR 2331019, 10.1017/S0004972700039344 |
| Reference: | [5] Badawi, A.: $n$-absorbing ideals of commutative rings and recent progress on three conjectures: A survey.Rings, Polynomials, and Modules Springer, Cham (2017), 33-52. Zbl 1390.13005, MR 3751690, 10.1007/978-3-319-65874-2_3 |
| Reference: | [6] Badawi, A., Celikel, E. Y.: On 1-absorbing primary ideals of commutative rings.J. Algebra Appl. 19 (2020), Article ID 2050111, 12 pages. Zbl 1440.13008, MR 4120088, 10.1142/S021949882050111X |
| Reference: | [7] Badawi, A., Issoual, M., Mahdou, N.: On $n$-absorbing ideals and $(m,n)$-closed ideals in trivial ring extensions of commutative rings.J. Algebra Appl. 18 (2019), Article ID 1950123, 19 pages. Zbl 1448.13006, MR 3977784, 10.1142/S0219498819501238 |
| Reference: | [8] Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings.Bull. Korean Math. Soc. 51 (2014), 1163-1173. Zbl 1308.13001, MR 3248714, 10.4134/BKMS.2014.51.4.1163 |
| Reference: | [9] Chhiti, M., Mahdou, N., Tamekkante, M.: Clean property in amalgamated algebras along an ideal.Hacet. J. Math. Stat. 44 (2015), 41-49. Zbl 1320.13020, MR 3363762, 10.15672/HJMS.2015449103 |
| Reference: | [10] Cox, J. A., Hetzel, A. J.: Uniformly primary ideals.J. Pure Appl. Algebra 212 (2008), 1-8. Zbl 1126.13001, MR 2355029, 10.1016/j.jpaa.2007.03.007 |
| Reference: | [11] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal.J. Pure Appl. Algebra 214 (2010), 1633-1641. Zbl 1191.13006, MR 2593689, 10.1016/j.jpaa.2009.12.008 |
| Reference: | [12] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties.J. Algebra Appl. 6 (2007), 443-459. Zbl 1126.13002, MR 2337762, 10.1142/S0219498807002326 |
| Reference: | [13] Khashan, H. A., Celikel, E. Y.: A new generalization of $(m,n)$-closed ideals.J. Math. Sci., New York 280 (2024), 288-299. Zbl 1543.13005, 10.1007/s10958-023-06814-2 |
| Reference: | [14] Khashan, H. A., Celikel, E. Y.: On weakly $(m,n)$-prime ideals of commutative rings.Bull. Korean Math. Soc. 61 (2024), 717-734. Zbl 1546.13012, MR 4752269, 10.4134/BKMS.b230319 |
| Reference: | [15] Kim, N. K., Lee, Y.: On right quasi-duo rings which are $\pi$-regular.Bull. Korean Math. Soc. 37 (2000), 217-227. Zbl 0963.16011, MR 1757489 |
| Reference: | [16] Koç, S., Tekir, Ü., z, E. Yıldı: On weakly 1-absorbing prime ideals.Ric. Mat. 72 (2023), 723-738. Zbl 1530.13005, MR 4649462, 10.1007/s11587-020-00550-4 |
| Reference: | [17] Yassine, A., Nikmehr, M. J., Nikandish, R.: On 1-absorbing prime ideals of commutative rings.J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages \99999DOI99999 10.1142/S0219498821501759 . Zbl 1479.13006, MR 4326079, 10.1142/S0219498821501759 |
| . |
Fulltext not available (moving wall 24 months)