Previous |  Up |  Next

Article

Title: $(m,n)$-prime ideals of commutative rings (English)
Author: Khashan, Hani A.
Author: Yetkin Çelikel, Ece
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 3
Year: 2025
Pages: 1073-1091
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with identity and $m$, $n$ be positive integers. We introduce the class of $(m,n)$-prime ideals which lies properly between the classes of prime and $(m,n)$-closed ideals. A proper ideal $I$ of $R$ is called $(m,n)$-prime if for $a,b\in R$, $a^{m}b\in I$ implies either $a^{n}\in I$ or $b\in I.$ Several characterizations of this new class with many examples are given. Analogous to primary decomposition, we define the \hbox {$(m,n)$-decomposition} of ideals and show that every ideal in an $n$-Noetherian ring has an $(m,n)$-decomposition. Furthermore, the $(m,n)$-prime avoidance theorem is proved. (English)
Keyword: $(m,n)$-prime ideal
Keyword: $(m,n)$-closed ideal
Keyword: $n$-absorbing ideal
Keyword: avoidance theorem
MSC: 13A15
MSC: 13F05
DOI: 10.21136/CMJ.2025.0090-25
.
Date available: 2025-09-19T12:11:16Z
Last updated: 2025-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153067
.
Reference: [1] Anderson, D. F., Badawi, A.: On $n$-absorbing ideals of commutative rings.Commun. Algebra 39 (2011), 1646-1672. Zbl 1232.13001, MR 2821499, 10.1080/00927871003738998
Reference: [2] Anderson, D. F., Badawi, A.: On $(m,n)$-closed ideals of commutative rings.J. Algebra Appl. 16 (2017), Article ID 1750013, 21 pages. Zbl 1355.13004, MR 3590874, 10.1142/S021949881750013X
Reference: [3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley, Reading (1969). Zbl 0175.03601, MR 0242802, 10.1201/9780429493638
Reference: [4] Badawi, A.: On 2-absorbing ideals of commutative rings.Bull. Aust. Math. Soc. 75 (2007), 417-429. Zbl 1120.13004, MR 2331019, 10.1017/S0004972700039344
Reference: [5] Badawi, A.: $n$-absorbing ideals of commutative rings and recent progress on three conjectures: A survey.Rings, Polynomials, and Modules Springer, Cham (2017), 33-52. Zbl 1390.13005, MR 3751690, 10.1007/978-3-319-65874-2_3
Reference: [6] Badawi, A., Celikel, E. Y.: On 1-absorbing primary ideals of commutative rings.J. Algebra Appl. 19 (2020), Article ID 2050111, 12 pages. Zbl 1440.13008, MR 4120088, 10.1142/S021949882050111X
Reference: [7] Badawi, A., Issoual, M., Mahdou, N.: On $n$-absorbing ideals and $(m,n)$-closed ideals in trivial ring extensions of commutative rings.J. Algebra Appl. 18 (2019), Article ID 1950123, 19 pages. Zbl 1448.13006, MR 3977784, 10.1142/S0219498819501238
Reference: [8] Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings.Bull. Korean Math. Soc. 51 (2014), 1163-1173. Zbl 1308.13001, MR 3248714, 10.4134/BKMS.2014.51.4.1163
Reference: [9] Chhiti, M., Mahdou, N., Tamekkante, M.: Clean property in amalgamated algebras along an ideal.Hacet. J. Math. Stat. 44 (2015), 41-49. Zbl 1320.13020, MR 3363762, 10.15672/HJMS.2015449103
Reference: [10] Cox, J. A., Hetzel, A. J.: Uniformly primary ideals.J. Pure Appl. Algebra 212 (2008), 1-8. Zbl 1126.13001, MR 2355029, 10.1016/j.jpaa.2007.03.007
Reference: [11] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal.J. Pure Appl. Algebra 214 (2010), 1633-1641. Zbl 1191.13006, MR 2593689, 10.1016/j.jpaa.2009.12.008
Reference: [12] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties.J. Algebra Appl. 6 (2007), 443-459. Zbl 1126.13002, MR 2337762, 10.1142/S0219498807002326
Reference: [13] Khashan, H. A., Celikel, E. Y.: A new generalization of $(m,n)$-closed ideals.J. Math. Sci., New York 280 (2024), 288-299. Zbl 1543.13005, 10.1007/s10958-023-06814-2
Reference: [14] Khashan, H. A., Celikel, E. Y.: On weakly $(m,n)$-prime ideals of commutative rings.Bull. Korean Math. Soc. 61 (2024), 717-734. Zbl 1546.13012, MR 4752269, 10.4134/BKMS.b230319
Reference: [15] Kim, N. K., Lee, Y.: On right quasi-duo rings which are $\pi$-regular.Bull. Korean Math. Soc. 37 (2000), 217-227. Zbl 0963.16011, MR 1757489
Reference: [16] Koç, S., Tekir, Ü., z, E. Yıldı: On weakly 1-absorbing prime ideals.Ric. Mat. 72 (2023), 723-738. Zbl 1530.13005, MR 4649462, 10.1007/s11587-020-00550-4
Reference: [17] Yassine, A., Nikmehr, M. J., Nikandish, R.: On 1-absorbing prime ideals of commutative rings.J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages \99999DOI99999 10.1142/S0219498821501759 . Zbl 1479.13006, MR 4326079, 10.1142/S0219498821501759
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo