Previous |  Up |  Next

Article

Keywords:
weighted complex networks; community detection; overlapping community; disjoint community
Summary:
The excessive increase in the amount of data caused a rise in the number of vertices and edges in the graph models. This gave rise to the concept of complex networks. Complex networks are present in almost every area of life, in social networks, natural sciences, drug discovery, etc. Detection of overlapping or disjoint communities in complex networks is an important problem. In this study, we propose two new algorithms to detect overlapping and disjoint communities in weighted complex networks. We assume that the weights represent how close the vertices are to each other in some sense. First, we calculate the similarity of the vertices to each other using the universal gravitational law, then place similar vertices in overlapping communities. Then, for each vertex in multiple communities, we calculate the attraction force of each community where this vertex is located. We leave the vertex in the community that attracts the vertex more and delete it from the others. The results of experiments conducted on complex networks consisting of real and artificial data show the efficiency of the proposed algorithms.
References:
[1] Alguliyev, R., Aliguliyev, R., Sukhostat, L.: Method for quantitative risk assessment of cyber-physical systems based on vulnerability analysis. Kybernetika 60 (2024), 6, 779-796. DOI 
[2] Amrahov, S. E., Ar, Y., Tugrul, B., Akay, B. E., Kartli, N.: A new approach to Mergesort algorithm: Divide smart and conquer. Future Gener. Computer Systems 157 (2024), 330-343. DOI 
[3] Amrahov, S. E., Tugrul, B.: A community detection algorithm on graph data. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) IEEE (2018), pp. 1-4. DOI 
[4] Ar, Y.: An initialization method for the latent vectors in probabilistic matrix factorization for sparse datasets. Evol. Intell. 13 (2020), 2, 269-281. DOI 
[5] Arasteh, M., Alizadeh, S., Lee, C. G.: Gravity algorithm for the community detection of large-scale network. J. Ambient Intell. Human Comput. 14 (2023), 1217–-1228. DOI 
[6] Bera, R. K., Mondal, S. K.: Analyzing a transportation problem with reliability under the shadowed environment. Oper. Res. Forum 6 (2025), article number 69. DOI 
[7] Bisht, M., Rawat, S.: A novel interval-valued neutrosophic model to solve uncertain transportation problems. OPSEARCH (2025), 1-35. DOI 
[8] Cetin, P., Tanriöver, Ö.: Priority rule for resource constrained project planning problem with predetermined work package durations. J. Faculty of Engineering and Architecture of Gazi University 35 (2020), 3, 1537-1549. DOI 
[9] Cetin, P., Amrahov, S. E.: A new network-based community detection algorithm for disjoint communities. Turkish J. Electr. Engrg. Comput. Sci. 30 (2022), 6, Article 13. DOI 
[10] Cetin, P., Amrahov, S. Emrah: A new overlapping community detection algorithm based on similarity of neighbors in complex networks. Kybernetika 58 (2022), 2, 277-300. DOI 
[11] Chi, K., Qu, H., Fu, Z.: A novel approach for overlapping community detection in social networks based on the attraction. J. Comput. Sci. 85 (2025), 102508. DOI 
[12] Dhanasekar, S., Rani, J. J., Annamalai, M.: Transportation problem for interval-valued trapezoidal intuitionistic fuzzy numbers. Int. J. Fuzzy Logic Intell. Systems 22 (2022), 2, 155-168. DOI 
[13] Chin, J. H., Ratnavelu, K.: Community detection using constrained label propagation algorithm with nodes exemption. Computing \textit(104) (2022), 339–-358. DOI 
[14] Ghareeb, A., Nooruldeen, O., Arslan, C. A., Choi, J. K.: Synergistic optimization of predictive models for water quality analysis in treatment plants using machine learning and evolutionary algorithms. Evolut. Intell. 18 (2025), 2, 1-24. DOI 
[15] Goswami, S., Das, A. K.: Determining maximum cliques for community detection in weighted sparse networks. Knowl. Inf. Syst. 64 (2022), 289–-324. DOI 
[16] Hajibabaei, H., Seydi, V., Koochari, A.: Community detection in weighted networks using probabilistic generative model. J. Intell. Inf. Syst. 60 (2023), 119–-136. DOI 
[17] Nejad, E. Hazrati, Yigit-Sert, S., Amrahov, S. Emrah: An effective global path planning algorithm with teaching-learning-based optimization. Kybernetika 60 (2024), 3, 293-316. DOI 
[18] He, Z., Chen, W., Wei, X., Liu, Y.: Mining statistically significant communities from weighted networks. IEEE Trans. Knowledge Data Engrg. 35 (2022), 6, 6073-6084. DOI 
[19] Kartli, N.: Hybrid algorithms for fixed charge transportation problem. Kybernetika 61 (2025), 2, 141-167. DOI 
[20] Kartli, N., Bostanci, E., Guzel, M. S.: A new algorithm for optimal solution of fixed charge transportation problem. Kybernetika 59 (2023), 1, 45-63. DOI 
[21] Kartli, N., Bostanci, E., Guzel, M. S.: Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227. DOI 
[22] Khastan, A., Jimenez, B. H., Moreno, A. B.: On the new solution to interval linear fractional programming problems. Evolut. Intell. 17 (2024), 5, 4001-4005. DOI 
[23] Khawaja, F. R., Zhang, Z., Ullah, A.: Common-neighbor based overlapping community detection in complex networks. Soc. Netw. Anal. Min. 15 (2025), Article number 61. DOI 
[24] Kumar, A., Kumar, P., Dohare, R.: Revisiting neighbourhood proximity based algorithm for overlapping community detection in weighted networks. Soc. Netw. Anal. Min. 14 (2024), 105. DOI 
[25] Kumar, P.: A depth-first search approach to detect the community structure of weighted networks using the neighbourhood proximity measure. Int. J. Data Sci. Anal. (2024). DOI 
[26] Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. {New J. Physics \textbf{11} (2009), 3, 033015. DOI 
[27] Li, S., Jiang, L., Wu, X., Han, W., Zhao, D., Wang, Z.: A weighted network community detection algorithm based on deep learning. Appl. Math. Comput. 401 (2021), 126012. DOI 
[28] Li, W., Wang, J., Cai, J.: .
[29] Liu, H., Li, Z., Wang, N.: Overlapping community detection algorithm based on similarity of node relationship. Soft Comput 27 (2023), 19, 13689–-13700. DOI 
[30] Lu, Z., Dong, Z. A.: Gravitation-based hierarchical community detection algorithm for structuring supply chain network. Int. J. Comput. Intel. Syst. 16 (2023), 110. DOI 
[31] Ma, J., Zhou, L., Zuo, J.: Adaptive community detection based on node dissimilarity. Int. J. Modern Physics C 2550066. DOI 
[32] McDaid, A., Greene, D., Hurley, N.: Normalized mutual information to evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515 (2011). DOI 
[33] Mohammed, S. N., Gunduc, S.: TPM: Transition Probability Matrix-Graph Structural Feature based Embedding. Kybernetika 59 (2023), 2, 234-253. DOI 
[34] Murray, G., Carenini, G., Ng, R.: Using the Omega Index for evaluating abstractive community detection. In: Proc. Workshop on Evaluation Metrics and System Comparison for Automatic Summarization}, Association for Computational Linguistics, 2012. pp. 10-18.
[35] Nallusamy, K., Easwarakumar, K. S.: PERMDEC: community deception in weighted networks using permanence. Computing 106 (2024), 353–-370. DOI 
[36] Nasibov, E., Demir, M., Vahaplar, A.: A fuzzy logic apparel size decision methodology for online marketing. Int. J. Clothing Sci. Technol. 31 (2019), 2, 299-315. DOI 
[37] Newman, M. E. J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 74 (2006), 3, 036104. DOI 
[38] Ozhan, B., Tugrul, B.: Analysis of Turkish cuisine flavors network. Int. J. Food Sci. Technol. 59 (2024), 2, 908-915. DOI 
[39] Pandey, S., Gupta, A.: Lazy merge sort: An improvement over merge sort. In: 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT), Greater Noida 2024, pp. 1-6. DOI 
[40] Pattanayak, H S., Verma, H. K., Sangal, A. L.: Gravitational community detection by predicting diameter. Discrete Math. Algorithms Appl. 14 (2022), 4, 2150145. DOI 
[41] Prokop, P., Drazdilova, P., Platos, J.: Overlapping community detection in weighted networks via hierarchical clustering. Plos one 19 (2024, 10, e0312596. DOI 
[42] Rossetti, G., Pappalardo, L., Rinzivillo, S.: A novel approach to evaluate community detection algorithms on ground truth. In: Complex Networks VII (2016), 133-144.
[43] Sandhiya, S., Dhanapal, A.: Solving neutrosophic multi-dimensional fixed charge transportation problem. Contempor. Math. 5 (2024), 3, 3601-3624. DOI 
[44] Masooleh, L. Samandari, Arbogast, J. E., Seider, W. D., Oktem, U., Soroush, M.: An efficient algorithm for community detection in complex weighted networks. AIChE J. 67 (2021), 7, e17205. DOI 
[45] Shen, M., Ma, Z.: A novel node gravitation-based label propagation algorithm for community detection. Int. J. Modern Physics C 30 (2019), 6, 1950049. DOI 
[46] Sheng, J., Liu, C., Chen, L., Wang, B., Zhang, J.: Research on community detection in complex networks based on internode attraction. Entropy 22 (2020), 12, 1383. DOI 
[47] Shivani, Chauhan, D., Rani, D.: A feasibility restoration particle swarm optimizer with chaotic maps for two-stage fixed-charge transportation problems. Swarm Evolution. Comput. 91 (2024), 101776. DOI 
[48] Subramaniam, M., Tripathi, T., Chandraumakantham, O.: Cluster Sort: A Novel Hybrid Approach to Efficient In-Place Sorting Using Data Clustering. IEEE Access 13 (2025), 74359-74374. DOI 
[49] Suja, C. K., Harinarayanan, C. V., Arivalagan, A.: Novel objective-based coot puzzle optimisation for overlapping community expansion in complex networks. Int. J. Network. Virtual Organis. 31 (2024), 4, 281-305. DOI 
[50] Wang, Y., Chen, J., Bai, J., Lin, X., Liang, S., Zhang, Y.: Spatial-SLPA: uncovering overlapping communities in geospatial networks via the spatially constrained speaker-listener label propagation algorithm. In: International Conference on Smart Transportation and City Engineering (STCE 2024), SPIE, 13575 (2025), pp. 1247-1259). DOI 
[51] Wu, X., Teng, D., Zhang, H., Hu, J., Quan, Y., Miao, Q., Sun, P. G.: Graph reconstruction and attraction method for community detection. Appl. Intell. 55 (2025), 5, 1-17. DOI 
[52] Yang, C., Li, M., Wang, Y.: Overlapping community detection algorithm based on the law of universal gravitation. In: MATEC Web of Conferences 22 (2015), 01056 EDP Sciences. DOI 
[53] Yıldırım, H. B., Kullu, K., Amrahov, S. E.: A graph model and a three-stage algorithm to aid the physically disabled with navigation. Univers. Access Inform. Soc. 23 (2024), 2, 901-911. DOI 
[54] Yu, Y. Y., Xu, C. Y., Cao, K. F.: An effective community detection method based on one-dimensional “attraction” in network science. Int. J. Modern Physics C 31 (2020), 5, 2050071. DOI 
[55] Žalik, K. R., Žalik, B.: Node attraction-facilitated evolution algorithm for community detection in networks. Soft Comput. 23 (2019), 6135–-6143. DOI 
[56] Zhou, H., Xi, B., Zhang, Y., Li, J., Zhang, F.: A graph clustering algorithm using attraction-force similarity for community detection. IEEE Access 7 (2019), 13683-13692. DOI 
[57] 2025), Dolphins network dataset available at (accessed June: . DOI 
[58] Zachary, W. W.: Karate club network. Available via NetworkX documentation https://networkx.org/documentation/stable/reference/generated/networkx.generators. social.karate_club_graph.html, DOI 
[59] 2025), Political books network dataset available at (accessed June: . DOI 
[60] 2025), Facebook social network dataset available at (accessed June: . DOI 
[61] 2025), Netscience co-authorship network dataset available at (accessed June: . DOI 
Partner of
EuDML logo