Previous |  Up |  Next

Article

Title: Constructing mixed uninorms on bounded lattices (English)
Author: Tian, Xiaofeng
Author: Xie, Aifang
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 61
Issue: 4
Year: 2025
Pages: 577-591
Summary lang: English
.
Category: math
.
Summary: In this paper, we present the definition of mixed uninorms and propose several methods for constructing two special classes of mixed uninorms on bounded lattices through t-subnorms and t-superconorms. These methods generalize $\mathbb{U}_{\min},$ $\mathbb{U}_{\max},$ $\mathbb{U}_{\min}^{1}$ and $\mathbb{U}_{\max}^{0}$ on bounded lattices that have been previously discussed in the literature. Some examples are given to construct mixed uninorms on bounded lattices. (English)
Keyword: bounded lattices
Keyword: uninorms
Keyword: T-superconorm
Keyword: T-subnorm
MSC: 03B52
MSC: 06Dxx
DOI: 10.14736/kyb-2025-4-0577
.
Date available: 2025-09-19T17:12:32Z
Last updated: 2025-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/153076
.
Reference: [1] Asici, E., Mesiar, R.: On the construction of uninorms on bounded lattices..Fuzzy Sets Syst. 408 (2021), 65-85.
Reference: [2] Birkhoff, G.: Lattice Theory. (Third edition.).Amer. Math. Soc., Rhode Island 1967.
Reference: [3] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices..In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica, 2014, pp. 61-66.
Reference: [4] Baets, B. De, Mesiar, R.: Triangular norm on product lattice,.Fuzzy Sets Syst. 104 (1999), 61-75.
Reference: [5] Coomann, G. De, Kerre, E.: Order norms on bounded partially ordered sets..J. Fuzzy Math. 2 (1994), 281-310.
Reference: [6] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices..Inform. Sci. 488 (2019) 111-139.
Reference: [7] Çaylı, G. D.: New methods to construct uninorms on bounded lattices..Int. J. Approx. Reason. 115 (2019), 254-264.
Reference: [8] Çaylı, G. D.: On the structure of uninorms on bounded lattices..Fuzzy Sets Syst. 357 (2019), 2-26.
Reference: [9] Çaylı, G. D.: Uninorms on bounded lattices with the underlying t-norms and t-conorms..Fuzzy Sets Syst. 395 (2020), 107-129.
Reference: [10] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices..Inform. Sci. 367 (2016), 221-231.
Reference: [11] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices..Int. J. Gen. Syst. 50 (2021), 139-158.
Reference: [12] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets.Kluwer Acad. Publ., Boston 2000.
Reference: [13] Dan, Y. X., Hu, B. Q., Qiao, J. S.: New constructions of uninorms on bounded lattices..Int. J. Approx. Reason. 110 (2019), 185-209.
Reference: [14] Dan, Y. X., Hu, B. Q.: A new structure for uninorms on bounded lattices..Fuzzy Sets Syst. 386 (2020), 77-94.
Reference: [15] Fodor, J. C., Yager, R. R., Rybalov, A.: Structure of uninorms..Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. Zbl 1232.03015, 10.1142/S0218488597000312
Reference: [16] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions..Cambridge University Press, 2009. Zbl 1206.68299
Reference: [17] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes..Inf. Sci. 181 (2011), 23-43.
Reference: [18] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by t-norms and t-subconorms..Fuzzy Sets Syst. 427 (2022), 109-131.
Reference: [19] Hua, X J., Zhang, H. P., Ouyang, Y.: Note on Construction of uninorms on bounded lattices..Kybernetika 57 (2021), 2, 372-382.
Reference: [20] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators..Int. J. Approx. Reason. 136 (2021), 1-13.
Reference: [21] Ji, W.: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms..Fuzzy Sets Syst. 403 (2021), 38-55.
Reference: [22] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices..Fuzzy Sets Syst. 261 (2015), 33-43. MR 3291484,
Reference: [23] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Springer Science Business Media, 2013. Zbl 1087.20041
Reference: [24] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice.Fuzzy Sets Syst. 395 (2020), 93-106.
Reference: [25] Pedrycz, W., Hirota, K.: Uninorm-based logic neurons as adaptive and interpretable processing constructs..Soft Comput. 11 (2007), 41-52.
Reference: [26] Schweizer, B., Sklar, A., al, et: Statistical metric spaces..Pacific J. Math. 10 (1960), 313-334.
Reference: [27] Xiu, Z. Y., Zheng, X.: New construction methods of uninorms on bounded lattices via uninorms..Fuzzy Sets Syst. 465 (2023), 108-535.
Reference: [28] Yager, R. R.: Aggregation operators and fuzzy systems modeling..Fuzzy Sets Syst. 67 (1994), 129-145.
Reference: [29] Yager, R. R., Rybalov, A.: Uninorms aggregation operators..Fuzzy Sets Syst. 80 (1996), 111-120.
Reference: [30] Zhang, H. P., Wu, M., Wang, Z., Ouyang, Y., Baets, B. De: A characterization of the classes Umin and Umax of uninorms on a bounded lattice..Fuzzy Sets Systems 423 (2021), 107-121.
Reference: [31] Yager, R. R.: Uninorms in fuzzy system modeling..Fuzzy Sets Syst. 122 (2001), 167-175. MR 1839955,
Reference: [32] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices..Int. J. Approx. Reason. 130 (2021), 22-49.
.

Files

Files Size Format View
Kybernetika_61-2025-4_8.pdf 592.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo