Previous |  Up |  Next

Article

Keywords:
hypercyclicity; linear relation; disk-cyclic linear relation; disk transitive linear relation
Summary:
The study of linear dynamical systems for linear relations was initiated by C.-C. Chen et al. in (2017). Then E. Abakumov et al. extended hypercyclicty to linear relations in (2018). We extend the concept of disk-cyclicity studied in M. Amouch, O. Benchiheb (2020), Z. Z. Jamil, M. Helal (2013), Y.-X. Liang, Z.-H. Zhou (2015), Z. J. Zeana (2002) for linear operators to linear relations.
References:
[1] Abakumov, E., Boudabbous, M., Mnif, M.: On hypercyclicity of linear relations. Result. Math. 73 (2018), Article ID 137, 17 pages. DOI 10.1007/s00025-018-0900-z | MR 3860909 | Zbl 1507.47003
[2] Álvarez, T.: Quasi-Fredholm and semi-B-Fredholm linear relations. Mediterr. J. Math. 14 (2017), Article ID 22, 26 pages. DOI 10.1007/s00009-016-0828-z | MR 3590364 | Zbl 1476.47003
[3] Álvarez, T., Keskes, S., Mnif, M.: On the structure of essentially semi-regular linear relations. Mediterr. J. Math. 16 (2019), Article ID 76, 20 pages. DOI 10.1007/s00009-019-1334-x | MR 3942866 | Zbl 1499.47003
[4] Alvarez, T., Sandovici, A.: Regular linear relations on Banach spaces. Banach J. Math. Anal. 15 (2021), Article ID 4, 25 pages. DOI 10.1007/s43037-020-00092-9 | MR 4159771 | Zbl 1507.47004
[5] Amouch, M., Benchiheb, O.: Diskcyclicity of sets of operators and applications. Acta Math. Sin., Engl. Ser. 36 (2020), 1203-1220. DOI 10.1007/s10114-020-9307-3 | MR 4174620 | Zbl 07334462
[6] Bamerni, N., Kiliçman, A.: Operators with diskcyclic vectors subspaces. J. Taibah Univ. Sci. 9 (2015), 414-419. DOI 10.1016/j.jtusci.2015.02.020
[7] Bamerni, N., Kiliçman, A., Noorani, M. S. M.: A review of some works in the theory of diskcyclic operators. Bull. Malays. Math. Soc. 39 (2016), 723-739. DOI 10.1007/s40840-015-0137-x | MR 3471344 | Zbl 1344.47004
[8] Bouaniza, H., Chamkha, Y., Mnif, M.: Perturbation of semi-Browder linear relations by commuting Riesz operators. Linear Multilinear Algebra 66 (2018), 285-308. DOI 10.1080/03081087.2017.1298079 | MR 3750591 | Zbl 1502.47002
[9] Chafai, E., Mnif, M.: Ascent and essential ascent spectrum of linear relations. Extr. Math. 31 (2016), 145-167. MR 3645262 | Zbl 1381.47005
[10] Chen, C.-C., Conejero, J. A., Kostić, M., Murillo-Arcila, M.: Dynamics of multivalued linear operators. Open Math. 15 (2017), 948-958. DOI 10.1515/math-2017-0082 | MR 3674105 | Zbl 1459.47002
[11] Cross, R.: Multivalued Linear Operators. Pure and Applied Mathematics 213. Marcel Dekker, New York (1998). MR 1631548 | Zbl 0911.47002
[12] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos. Universitext. Springer, Ber-lin (2011). DOI 10.1007/978-1-4471-2170-1 | MR 2919812 | Zbl 1246.47004
[13] Jamil, Z. Z., Helal, M.: Equivalent between the criterion and the three open set's conditions in disk-cyclicity. Int. J. Contemp. Math. Sci. 8 (2013), 257-261. DOI 10.1007/978-1-4471-2170-1 | MR 3040831 | Zbl 1283.47013
[14] Liang, Y.-X., Zhou, Z.-H.: Disk-cyclicity and codisk-cyclicity of certain shift operators. Oper. Matrices 9 (2015), 831-846. DOI 10.7153/oam-09-48 | MR 3447588 | Zbl 1347.47008
[15] Liang, Y.-X., Zhou, Z.-H.: Disk-cyclic and codisk-cyclic tuples of the adjoint weighted composition operators on Hilbert spaces. Bull. Belg. Math. Soc. - Simon Stevin 23 (2016), 203-215. DOI 10.36045/bbms/1464710114 | MR 3507078 | Zbl 1384.47005
[16] Mnif, M., Neji, R.: Kato decomposition theorem for linear pencils. Filomat 34 (2020), 1157-1166. DOI 10.2298/FIL2004157M | MR 4205477 | Zbl 1498.47033
[17] Mnif, M., Ouled-Hmed, A.-A.: Local spectral theory and surjective spectrum of linear relations. Ukr. Math. J. 73 (2021), 255-275. DOI 10.1007/s11253-021-01920-3 | MR 4223547 | Zbl 07411045
[18] Rolewicz, S.: On orbits of elements. Stud. Math. 32 (1969), 17-22. DOI 10.4064/sm-32-1-17-22 | MR 0241956 | Zbl 0174.44203
[19] Sandovici, A.: On the adjoint of linear relations in Hilbert spaces. Mediterr. J. Math. 17 (2020), Article ID 68, 23 pages. DOI 10.1007/s00009-020-1503-y | MR 4070098 | Zbl 1442.47001
[20] Wang, Y., Zeng, H.-G.: Disk-cyclic and codisk-cyclic weighted pseudo-shifts. Bull. Belg. Math. Soc. - Simon Stevin 25 (2018), 209-224. DOI 10.36045/bbms/1530065010 | MR 3819123 | Zbl 06916056
[21] Zeana, Z. J.: Cyclic Phenomena of Operators on Hilbert Space: Ph.D. Thesis. University of Bagdad, Bagdad (2002).
Partner of
EuDML logo