| Title: | Notes on number of one-troughed travelling waves in asymmetrically supported bending beam (English) |
| Author: | Formánková Levá, Hana |
| Author: | Holubová, Gabriela |
| Language: | English |
| Journal: | Applications of Mathematics |
| ISSN: | 0862-7940 (print) |
| ISSN: | 1572-9109 (online) |
| Volume: | 70 |
| Issue: | 4 |
| Year: | 2025 |
| Pages: | 457-472 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | We study the boundary value problem for nonlinear fourth-order partial differential equation with jumping nonlinearity which can serve, e.g., as a model of an asymmetrically supported bending beam. We focus on a special type of solutions, the so-called one-troughed travelling waves. The main goal of this paper is to show the existence of at least two different one-troughed travelling waves for particular wave speeds and input parameters of the studied problem. We present the upper bounds for the maximal number of one-troughed solutions together with a visualisation of obtained results and corresponding solutions. Finally, we list several open questions regarding this topic. (English) |
| Keyword: | beam equation |
| Keyword: | jumping nonlinearity |
| Keyword: | travelling wave |
| Keyword: | one-troughed solution |
| MSC: | 34B15 |
| MSC: | 34B40 |
| MSC: | 35A02 |
| MSC: | 35C07 |
| DOI: | 10.21136/AM.2025.0035-25 |
| . | |
| Date available: | 2025-10-03T09:11:42Z |
| Last updated: | 2025-10-06 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153087 |
| . | |
| Reference: | [1] Amann, O. H., Kármán, T. von, Woodruff, G. B.: The Failure of the Tacoma Narrows Bridge.Federal Works Agency, Washington (1941). |
| Reference: | [2] Breuer, B., Horák, J., McKenna, P. J., Plum, M.: A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam.J. Differ. Equations 224 (2006), 60-97. Zbl 1104.34034, MR 2220064, 10.1016/j.jde.2005.07.016 |
| Reference: | [3] Camacho, J. C., Bruzón, M. S., Ramírez, J., Gandarias, M. L.: Exact travelling wave solutions of a beam equation.J. Nonlinear Math. Phys. 18 (2011), 33-49. Zbl 1362.35298, MR 2827487, 10.1142/S140292511100126X |
| Reference: | [4] Champneys, A. R., McKenna, P. J.: On solitary waves of a piecewise linear suspended beam model.Nonlinearity 10 (1997), 1763-1782. Zbl 0903.73031, MR 1483565, 10.1088/0951-7715/10/6/018 |
| Reference: | [5] Champneys, A. R., McKenna, P. J., Zegeling, P. A.: Solitary waves in nonlinear beam equations: Stability, fission and fusion.Nonlinear Dyn. 21 (2000), 31-53. Zbl 0974.74034, MR 1758951, 10.1023/A:1008302207311 |
| Reference: | [6] Chen, Y.: Traveling wave solutions to beam equation with fast-increasing nonlinear restoring forces.Appl. Math., Ser. B (Engl. Ed.) 15 (2000), 151-160. Zbl 0969.35097, MR 1760229, 10.1007/s11766-000-0021-8 |
| Reference: | [7] Chen, Y., McKenna, P. J.: Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations.J. Differ. Equations 136 (1997), 325-355. Zbl 0879.35113, MR 1448828, 10.1006/jdeq.1996.3155 |
| Reference: | [8] Chen, Y., McKenna, P. J.: Travelling waves in a nonlinearly suspended beam: Some computational results and four open questions.Philos. Trans. R. Soc. Lond., Ser. A 355 (1997), 2175-2184. Zbl 0895.35100, MR 1484142, 10.1098/rsta.1997.0116 |
| Reference: | [9] Diaferio, M., Sepe, V.: Smoothed ``slack cable'' models for large amplitude oscillations of suspension bridges.Mech. Based Design Struct. Machines 32 (2004), 363-400. 10.1081/SME-200028000 |
| Reference: | [10] Levá, H. Formánková, Holubová, G., Nečesal, P.: Lower bounds for admissible values of the travelling wave speed in asymmetrically supported beam.Accepted for publication in Topol. Methods Nonlinear Anal. Available at https://arxiv.org/abs/2412.07500 2024 27 pages. 10.48550/arXiv.2412.07500 |
| Reference: | [11] Holubová, G., Levá, H.: Travelling wave solutions of the beam equation with jumping nonlinearity.J. Math. Anal. Appl. 527 (2023) Article ID 127466, 15 pages. Zbl 1525.34068, MR 4601072, 10.1016/j.jmaa.2023.127466 |
| Reference: | [12] Karageorgis, P., Stalker, J.: A lower bound for the amplitude of traveling waves of suspension bridges.Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 5212-5214. Zbl 1266.34078, MR 2927583, 10.1016/j.na.2012.04.037 |
| Reference: | [13] Lazer, A. C., McKenna, P. J.: Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis.SIAM Rev. 32 (1990), 537-578. Zbl 0725.73057, MR 1084570, 10.1137/103212 |
| Reference: | [14] Lazer, A. C., McKenna, P. J.: On travelling waves in a suspension bridge model as the wave speed goes to zero.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 3998-4001. Zbl 1228.34065, MR 2802982, 10.1016/j.na.2011.03.024 |
| Reference: | [15] Levandosky, S.: Stability and instability of fourth-order solitary waves.J. Dyn. Differ. Equations 10 (1998), 151-188. Zbl 0893.35079, MR 1607537, 10.1023/A:1022644629950 |
| Reference: | [16] Li, T., Sun, J., Wu, T.: Existence of homoclinic solutions for a fourth order differential equation with a parameter.Appl. Math. Comput. 251 (2015), 499-506. Zbl 1328.34038, MR 3294736, 10.1016/j.amc.2014.11.056 |
| Reference: | [17] McKenna, P. J., Walter, W.: Travelling waves in a suspension bridge.SIAM J. Appl. Math. 50 (1990), 703-715. Zbl 0699.73038, MR 1050908, 10.1137/0150041 |
| Reference: | [18] Smets, D., Berg, J. B. van den: Homoclinic solutions for Swift-Hohenberg and suspension brigde type equations.J. Differ. Equations 184 (2002), 78-96. Zbl 1029.34036, MR 1929147, 10.1006/jdeq.2001.4135 |
| . |
Fulltext not available (moving wall 24 months)