| Title: | Qualitative analysis of HAART effects on HIV and SARS-CoV-2 coinfection model (English) |
| Author: | Maurício de Carvalho, João Paulo Simões |
| Language: | English |
| Journal: | Applications of Mathematics |
| ISSN: | 0862-7940 (print) |
| ISSN: | 1572-9109 (online) |
| Volume: | 70 |
| Issue: | 4 |
| Year: | 2025 |
| Pages: | 495-516 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | HIV is known for causing the destruction of the immune system by affecting different types of cells, while SARS-CoV-2 is an extremely contagious virus that leads to the development of COVID-19. Understanding how these two viruses interact in coinfected individuals is essential, especially in populations under antiretroviral treatment. In this study, we develop and analyze a novel mathematical model capturing the coinfection dynamics of HIV and SARS-CoV-2 under the influence of highly active antiretroviral therapy (HAART). In contrast to previous models, our formulation includes the effect of HAART on both infections and derives the basic reproduction numbers for each virus. We prove that transcritical bifurcations occur when the basic reproduction numbers cross the threshold value of 1, and we establish the conditions for stability of the disease-free equilibria. Numerical simulations show that HAART, although designed to control HIV, also reduces SARS-CoV-2 proliferation in coinfected hosts, which, as far as we know, has not been fully addressed in previous models in the literature. These findings reveal a potentially beneficial indirect effect of antiretroviral therapy on SARS-CoV-2 dynamics, offering new theoretical insights into the control of viral coinfections. (English) |
| Keyword: | bifurcation analysis |
| Keyword: | basic reproduction number |
| Keyword: | HAART |
| Keyword: | coinfection |
| MSC: | 34C11 |
| MSC: | 34C23 |
| MSC: | 34C60 |
| MSC: | 37N25 |
| MSC: | 37N30 |
| MSC: | 65Z05 |
| MSC: | 92B05 |
| DOI: | 10.21136/AM.2025.0280-24 |
| . | |
| Date available: | 2025-10-03T11:19:13Z |
| Last updated: | 2025-10-06 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153090 |
| . | |
| Reference: | [1] Bairagi, N., Adak, D.: Dynamics of cytotoxic T-lymphocytes and helper cells in human immunodeficiency virus infection with Hill-type infection rate and sigmoidal CTL expansion.Chaos Solitons Fractals 103 (2017), 52-67. Zbl 1375.92026, MR 3689797, 10.1016/j.chaos.2017.05.036 |
| Reference: | [2] Bajgain, K. T., Badal, S., Bajgain, B. B., Santana, M. J.: Prevalence of comorbidities among individuals with COVID-19: A rapid review of current literature.Am. J. Infect. Control 49 (2021), 238-246. 10.1016/j.ajic.2020.06.213 |
| Reference: | [3] Basoulis, D., Mastrogianni, E., Voutsinas, P.-M., Psichogiou, M.: HIV and COVID-19 co-infection: Epidemiology, clinical characteristics, and treatment.Viruses 15 (2023), Article ID 577, 21 pages. 10.3390/v15020577 |
| Reference: | [4] Batu, T. D., Obsu, L. L., Deressa, C. T.: Co-infection dynamics of COVID-19 and HIV/AIDS.Sci. Report. 13 (2023), Article ID 18437, 21 pages. 10.1038/s41598-023-45520-6 |
| Reference: | [5] Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology.Texts in Applied Mathematics 40. Springer, New York (2012). Zbl 1302.92001, MR 3024808, 10.1007/978-1-4614-1686-9 |
| Reference: | [6] Chen, W., Zhang, L., Wang, N., Teng, Z.: Bifurcation analysis and chaos for a double-strains HIV coinfection model with intracellular delays, saturated incidence and logistic growth.Math. Comput. Simul. 223 (2024), 617-641. Zbl 07963847, MR 4744960, 10.1016/j.matcom.2024.04.025 |
| Reference: | [7] Chitnis, N., Hyman, J. M., Cushing, J. M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model.Bull. Math. Biol. 70 (2008), 1272-1296. Zbl 1142.92025, MR 2421498, 10.1007/s11538-008-9299-0 |
| Reference: | [8] Höft, M. A., Burgers, W. A., Riou, C.: The immune response to SARS-CoV-2 in people with HIV.Cell. Mol. Immunol. 21 (2024), 184-196. 10.1038/s41423-023-01087-w |
| Reference: | [9] Hu, B., Guo, H., Zhou, P., Shi, Z.-L.: Characteristics of SARS-CoV-2 and COVID-19.Nat. Rev. Microbiol. 19 (2021), 141-154. 10.1038/s41579-020-00459-7 |
| Reference: | [10] Carvalho, J. P. S. Maurício de, Moreira-Pinto, B.: A fractional-order model for CoViD-19 dynamics with reinfection and the importance of quarantine.Chaos Solitons Fractals 151 (2021), Article ID 111275, 7 pages. MR 4296947, 10.1016/j.chaos.2021.111275 |
| Reference: | [11] Carvalho, J. P. S. Maurício de, Pinto, C. M. A.: Role of the immune system in AIDS-defining malignancies.Perspectives in Dynamical Systems I. Mechatronics and Life Sciences Springer Proceedings in Mathematics & Statistics 362. Springer, Cham (2022), 95-105. Zbl 1485.92037, 10.1007/978-3-030-77306-9_9 |
| Reference: | [12] Mekonena, K. G., Obsu, L. L.: Mathematical modeling and analysis for the co-infection of COVID-19 and tuberculosis.Heliyon 8 (2022), Article ID e11195, 11 pages. 10.1016/j.heliyon.2022.e11195 |
| Reference: | [13] Moriconi, D., Masi, S., Rebelos, E., Virdis, A., Manca, M. L., Marco, S. De, Taddei, S., Nannipieri, M.: Obesity prolongs the hospital stay in patients affected by COVID-19, and may impact on SARS-COV-2 shedding.Obesity Research Clin. Pract. 14 (2020), 205-209. 10.1016/j.orcp.2020.05.009 |
| Reference: | [14] Musa, R., Peter, O. J., Oguntolu, F. A.: A non-linear differential equation model of COVID-19 and seasonal influenza co-infection dynamics under vaccination strategy and immunity waning.Healthcare Anal. 4 (2023), Article ID 100240, 20 pages. 10.1016/j.health.2023.100240 |
| Reference: | [15] Peter, O. J., Madubueze, C. E., Ojo, M. M., Oguntolu, F. A., Ayoola, T. A.: Modeling and optimal control of monkeypox with cost-effective strategies.Model. Earth Syst. Environ. 9 (2023), 1989-2007. 10.1007/s40808-022-01607-z |
| Reference: | [16] Peter, O. J., Panigoro, H. S., Abidemi, A., Ojo, M. M., Oguntolu, F. A.: Mathematical model of COVID-19 pandemic with double dose vaccination.Acta Biotheor. 71 (2023), Article ID 9, 30 pages. 10.1007/s10441-023-09460-y |
| Reference: | [17] Rothan, H. A., Byrareddy, S. N.: The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J. Autoimmun. 109 (2020), Article ID 102433, 4 pages. 10.1016/j.jaut.2020.102433 |
| Reference: | [18] Roy, P. K., Bairagi, N., Chattopadhyay, J., Chattopadhyay, B.: HIV model with intracellular delay -- A mathematical study.IEEE International Conference on Automation Science and Engineering 2009 IEEE, Los Alamitos (2009), 373-378. 10.1109/COASE.2009.5234140 |
| Reference: | [19] J. Sun, W.-T. He, L. Wang, A. Lai, X. Ji, X. Zhai, G. Li, M. A. Suchard, J. Tian, J. Zhou, M. Veit, S. Su: COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives.Trends Molecul. Med. 26 (2020), 483-495. 10.1016/j.molmed.2020.02.008 |
| Reference: | [20] Tang, S., Ma, W., Bai, P.: A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidyl peptidase 4.Comput. Math. Methods Med. 2017 (2017), Article ID 5285810, 6 pages. Zbl 1397.92681, MR 3690369, 10.1155/2017/5285810 |
| Reference: | [21] Driessche, P. van den, Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.Math. Biosci. 180 (2002), 29-48. Zbl 1015.92036, MR 1950747, 10.1016/S0025-5564(02)00108-6 |
| Reference: | [22] Vemparala, B., Chowdhury, S., Guedj, J., Dixit, N. M.: Modelling HIV-1 control and remission.npj Syst. Biol. Appl. 10 (2024), Article ID 84, 11 pages. 10.1038/s41540-024-00407-8 |
| Reference: | [23] Vitiello, A., Ferrara, F., Pelliccia, C., Granata, G., Porta, R. La: Cytokine storm and colchicine potential role in fighting SARS-CoV-2 pneumonia.Ital. J. Med. 14 (2020), 88-94. 10.4081/itjm.2020.1284 |
| Reference: | [24] (WHO), World Health Organization: COVID-19 Cases, World.Available at https://covid19.who.int \99999yr99999 Accessed 30 April 2025. |
| Reference: | [25] (WHO), World Health Organization: HIV and AIDS.Available at https://www.who.int/news-room/fact-sheets/detail/hiv-aids \99999yr99999 Accessed 30 April 2025. |
| . |
Fulltext not available (moving wall 24 months)