Previous |  Up |  Next

Article

Title: Qualitative analysis of HAART effects on HIV and SARS-CoV-2 coinfection model (English)
Author: Maurício de Carvalho, João Paulo Simões
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 4
Year: 2025
Pages: 495-516
Summary lang: English
.
Category: math
.
Summary: HIV is known for causing the destruction of the immune system by affecting different types of cells, while SARS-CoV-2 is an extremely contagious virus that leads to the development of COVID-19. Understanding how these two viruses interact in coinfected individuals is essential, especially in populations under antiretroviral treatment. In this study, we develop and analyze a novel mathematical model capturing the coinfection dynamics of HIV and SARS-CoV-2 under the influence of highly active antiretroviral therapy (HAART). In contrast to previous models, our formulation includes the effect of HAART on both infections and derives the basic reproduction numbers for each virus. We prove that transcritical bifurcations occur when the basic reproduction numbers cross the threshold value of 1, and we establish the conditions for stability of the disease-free equilibria. Numerical simulations show that HAART, although designed to control HIV, also reduces SARS-CoV-2 proliferation in coinfected hosts, which, as far as we know, has not been fully addressed in previous models in the literature. These findings reveal a potentially beneficial indirect effect of antiretroviral therapy on SARS-CoV-2 dynamics, offering new theoretical insights into the control of viral coinfections. (English)
Keyword: bifurcation analysis
Keyword: basic reproduction number
Keyword: HAART
Keyword: coinfection
MSC: 34C11
MSC: 34C23
MSC: 34C60
MSC: 37N25
MSC: 37N30
MSC: 65Z05
MSC: 92B05
DOI: 10.21136/AM.2025.0280-24
.
Date available: 2025-10-03T11:19:13Z
Last updated: 2025-10-06
Stable URL: http://hdl.handle.net/10338.dmlcz/153090
.
Reference: [1] Bairagi, N., Adak, D.: Dynamics of cytotoxic T-lymphocytes and helper cells in human immunodeficiency virus infection with Hill-type infection rate and sigmoidal CTL expansion.Chaos Solitons Fractals 103 (2017), 52-67. Zbl 1375.92026, MR 3689797, 10.1016/j.chaos.2017.05.036
Reference: [2] Bajgain, K. T., Badal, S., Bajgain, B. B., Santana, M. J.: Prevalence of comorbidities among individuals with COVID-19: A rapid review of current literature.Am. J. Infect. Control 49 (2021), 238-246. 10.1016/j.ajic.2020.06.213
Reference: [3] Basoulis, D., Mastrogianni, E., Voutsinas, P.-M., Psichogiou, M.: HIV and COVID-19 co-infection: Epidemiology, clinical characteristics, and treatment.Viruses 15 (2023), Article ID 577, 21 pages. 10.3390/v15020577
Reference: [4] Batu, T. D., Obsu, L. L., Deressa, C. T.: Co-infection dynamics of COVID-19 and HIV/AIDS.Sci. Report. 13 (2023), Article ID 18437, 21 pages. 10.1038/s41598-023-45520-6
Reference: [5] Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology.Texts in Applied Mathematics 40. Springer, New York (2012). Zbl 1302.92001, MR 3024808, 10.1007/978-1-4614-1686-9
Reference: [6] Chen, W., Zhang, L., Wang, N., Teng, Z.: Bifurcation analysis and chaos for a double-strains HIV coinfection model with intracellular delays, saturated incidence and logistic growth.Math. Comput. Simul. 223 (2024), 617-641. Zbl 07963847, MR 4744960, 10.1016/j.matcom.2024.04.025
Reference: [7] Chitnis, N., Hyman, J. M., Cushing, J. M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model.Bull. Math. Biol. 70 (2008), 1272-1296. Zbl 1142.92025, MR 2421498, 10.1007/s11538-008-9299-0
Reference: [8] Höft, M. A., Burgers, W. A., Riou, C.: The immune response to SARS-CoV-2 in people with HIV.Cell. Mol. Immunol. 21 (2024), 184-196. 10.1038/s41423-023-01087-w
Reference: [9] Hu, B., Guo, H., Zhou, P., Shi, Z.-L.: Characteristics of SARS-CoV-2 and COVID-19.Nat. Rev. Microbiol. 19 (2021), 141-154. 10.1038/s41579-020-00459-7
Reference: [10] Carvalho, J. P. S. Maurício de, Moreira-Pinto, B.: A fractional-order model for CoViD-19 dynamics with reinfection and the importance of quarantine.Chaos Solitons Fractals 151 (2021), Article ID 111275, 7 pages. MR 4296947, 10.1016/j.chaos.2021.111275
Reference: [11] Carvalho, J. P. S. Maurício de, Pinto, C. M. A.: Role of the immune system in AIDS-defining malignancies.Perspectives in Dynamical Systems I. Mechatronics and Life Sciences Springer Proceedings in Mathematics & Statistics 362. Springer, Cham (2022), 95-105. Zbl 1485.92037, 10.1007/978-3-030-77306-9_9
Reference: [12] Mekonena, K. G., Obsu, L. L.: Mathematical modeling and analysis for the co-infection of COVID-19 and tuberculosis.Heliyon 8 (2022), Article ID e11195, 11 pages. 10.1016/j.heliyon.2022.e11195
Reference: [13] Moriconi, D., Masi, S., Rebelos, E., Virdis, A., Manca, M. L., Marco, S. De, Taddei, S., Nannipieri, M.: Obesity prolongs the hospital stay in patients affected by COVID-19, and may impact on SARS-COV-2 shedding.Obesity Research Clin. Pract. 14 (2020), 205-209. 10.1016/j.orcp.2020.05.009
Reference: [14] Musa, R., Peter, O. J., Oguntolu, F. A.: A non-linear differential equation model of COVID-19 and seasonal influenza co-infection dynamics under vaccination strategy and immunity waning.Healthcare Anal. 4 (2023), Article ID 100240, 20 pages. 10.1016/j.health.2023.100240
Reference: [15] Peter, O. J., Madubueze, C. E., Ojo, M. M., Oguntolu, F. A., Ayoola, T. A.: Modeling and optimal control of monkeypox with cost-effective strategies.Model. Earth Syst. Environ. 9 (2023), 1989-2007. 10.1007/s40808-022-01607-z
Reference: [16] Peter, O. J., Panigoro, H. S., Abidemi, A., Ojo, M. M., Oguntolu, F. A.: Mathematical model of COVID-19 pandemic with double dose vaccination.Acta Biotheor. 71 (2023), Article ID 9, 30 pages. 10.1007/s10441-023-09460-y
Reference: [17] Rothan, H. A., Byrareddy, S. N.: The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J. Autoimmun. 109 (2020), Article ID 102433, 4 pages. 10.1016/j.jaut.2020.102433
Reference: [18] Roy, P. K., Bairagi, N., Chattopadhyay, J., Chattopadhyay, B.: HIV model with intracellular delay -- A mathematical study.IEEE International Conference on Automation Science and Engineering 2009 IEEE, Los Alamitos (2009), 373-378. 10.1109/COASE.2009.5234140
Reference: [19] J. Sun, W.-T. He, L. Wang, A. Lai, X. Ji, X. Zhai, G. Li, M. A. Suchard, J. Tian, J. Zhou, M. Veit, S. Su: COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives.Trends Molecul. Med. 26 (2020), 483-495. 10.1016/j.molmed.2020.02.008
Reference: [20] Tang, S., Ma, W., Bai, P.: A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidyl peptidase 4.Comput. Math. Methods Med. 2017 (2017), Article ID 5285810, 6 pages. Zbl 1397.92681, MR 3690369, 10.1155/2017/5285810
Reference: [21] Driessche, P. van den, Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.Math. Biosci. 180 (2002), 29-48. Zbl 1015.92036, MR 1950747, 10.1016/S0025-5564(02)00108-6
Reference: [22] Vemparala, B., Chowdhury, S., Guedj, J., Dixit, N. M.: Modelling HIV-1 control and remission.npj Syst. Biol. Appl. 10 (2024), Article ID 84, 11 pages. 10.1038/s41540-024-00407-8
Reference: [23] Vitiello, A., Ferrara, F., Pelliccia, C., Granata, G., Porta, R. La: Cytokine storm and colchicine potential role in fighting SARS-CoV-2 pneumonia.Ital. J. Med. 14 (2020), 88-94. 10.4081/itjm.2020.1284
Reference: [24] (WHO), World Health Organization: COVID-19 Cases, World.Available at https://covid19.who.int \99999yr99999 Accessed 30 April 2025.
Reference: [25] (WHO), World Health Organization: HIV and AIDS.Available at https://www.who.int/news-room/fact-sheets/detail/hiv-aids \99999yr99999 Accessed 30 April 2025.
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo