[2] Babaei, M., Aghaei, A. A., Kazemi, Z., Jamshidi, M., Ghaderi, R., Parand, K.:
Solving a class of Thomas-Fermi equations: A new solution concept based on physics-informed machine learning. Math. Comput. Simul. 225 (2024), 716-730.
DOI 10.1016/j.matcom.2024.06.009 |
MR 4761356 |
Zbl 08030564
[4] Bär, M., Gottschalk, N., Eiswirth, M., Ertl, G.:
Spiral waves in a surface reaction: Model calculations. J. Chem. Phys. 100 (1994), 1202-1214.
DOI 10.1063/1.466650
[5] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., Siskind, J. M.:
Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res. 18 (2017), Article ID 153, 43 pages.
MR 3800512 |
Zbl 06982909
[7] Dehghan, M., Heris, J. M., Saadatmandi, A.:
Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses. Math. Methods Appl. Sci. 33 (2010), 1384-1398.
DOI 10.1002/mma.1329 |
MR 2674780 |
Zbl 1196.35025
[9] Goodfellow, I., Bengio, Y., Courville, A.:
Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016).
MR 3617773 |
Zbl 1373.68009
[10] Hadian-Rasanan, A. H., Rahmati, D., Gorgin, S., Parand, K.:
A single layer fractional orthogonal neural network for solving various types of Lane-Emden equation. New Astronomy 75 (2020), Article D 101307, 14 pages.
DOI 10.1016/j.newast.2019.101307
[13] İnan, B.:
A finite difference method for solving generalized FitzHugh-Nagumo equation. AIP Conf. Proc. 1926 (2018), Article ID 020018, 8 pages.
DOI 10.1063/1.5020467 |
Zbl 1469.65132
[14] Jiwari, R., Gupta, R. K., Kumar, V.:
Polynomial differential quadrature method for numerical solutions of the generalized Fitzhugh-Nagumo equation with time-dependent coefficients. Ain Shams Eng. J. 5 (2014), 1343-1350.
DOI 10.1016/j.asej.2014.06.005
[15] Jones, D. S., Plank, M. J., Sleeman, B. D.:
Differential Equations and Mathematical Biology. Chapman & Hall/CRC Mathematical and Computational Biology Series. CRC Press, Boca Raton (2010).
DOI 10.4324/9780203009314 |
MR 2573923 |
Zbl 1298.92003
[25] Nucci, M. C., Clarkson, P. A.:
The nonclassical method is more general than the direct method for symmetry reductions: An example of the Fitzhugh-Nagumo equation. Phys. Lett., A 164 (1992), 49-56.
DOI 10.1016/0375-9601(92)90904-Z |
MR 1162061
[27] Parand, K., Moayeri, M. M., Latifi, S., Delkhosh, M.:
A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions. Eur. Phys. J. Plus 132 (2017), Article ID 325, 11 pages.
DOI 10.1140/epjp/i2017-11600-0
[29] Raissi, M., Perdikaris, P., Karniadakis, G. E.:
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378 (2019), 686-707.
DOI 10.1016/j.jcp.2018.10.045 |
MR 3881695 |
Zbl 1415.68175
[30] Rivlin, T. J.:
Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory. Dover, New York (2020).
MR 4878071 |
Zbl 1458.41001
[31] Shih, M., Momoniat, E., Mahomed, F. M.:
Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh-Nagumo equation. J. Math. Phys. 46 (2005), Article ID 023503, 10 pages.
DOI 10.1063/1.1839276 |
MR 2121716 |
Zbl 1076.35052