Previous |  Up |  Next

Article

Title: A weighted hybrid conjugate gradient method for unconstrained multiobjective optimization problems (English)
Author: Jong, Yunchol
Author: Hwang, Wonchol
Author: Rim, Yungwang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 4
Year: 2025
Pages: 537-561
Summary lang: English
.
Category: math
.
Summary: We propose a weighted HS (Hestenes-Stiefel)-FR (Fletcher-Reeves) hybrid conjugate gradient method for unconstrained multiobjective optimization problem, in which a new positive coefficient of the multiobjective steepest descent direction is adaptively updated to keep its positiveness. The method takes advantage of a weighted hybrid of our modified HS and FR parameters and under the Armijo-type backtracking line search, it has global convergence to a Pareto critical point (point satisfying the first-order necessary condition for Pareto optimality) without convexity assumption on the objectives. Numerical experiments show that the practical performance of the method is competitive with the existing methods such as conjugate gradient method, steepest descent method, Newton method, and quasi-Newton method for unconstrained multiobjective optimization. (English)
Keyword: multiobjective optimization
Keyword: Pareto optimality
Keyword: conjugate gradient method
Keyword: backtracking line search
Keyword: Armijo condition
MSC: 49M37
MSC: 65K05
MSC: 90C29
DOI: 10.21136/AM.2025.0040-25
.
Date available: 2025-10-03T12:11:22Z
Last updated: 2025-10-06
Stable URL: http://hdl.handle.net/10338.dmlcz/153092
.
Reference: [1] Ansary, M. A. T., Panda, G.: A modified quasi-Newton method for vector optimization problem.Optimization 64 (2015), 2289-2306. Zbl 1327.90275, MR 3391220, 10.1080/02331934.2014.947500
Reference: [2] Bandyopadhyay, S., Pal, S. K., Aruna, B.: Multiobjective GAs, quantitative indices, and pattern classification.IEEE Trans. Syst. Man Cybern., Part B 34 (2004), 2088-2099. 10.1109/TSMCB.2004.834438
Reference: [3] Cabrera-Guerrero, G., Lagos, C.: Comparing multi-objective local search algorithms for the beam angle selection problem.Mathematics 10 (2022), Article ID 159, 25 pages. 10.3390/math10010159
Reference: [4] Chuong, T. D., Mordukhovich, B. S., Yao, J.-C.: Hybrid approximate proximal algorithms for efficient solutions in vector optimization.J. Nonlinear Convex Anal. 12 (2011), 257-286. Zbl 1223.49033, MR 2858309
Reference: [5] Coello, C. A. Coello, Lamont, G. B., Veldhuizen, D. A. Van: Evolutionary Algorithms for Solving Multi-Objective Problems.Springer, New York (2007). Zbl 1142.90029, MR 2350880, 10.1007/978-0-387-36797-2
Reference: [6] Denysiuk, R., Gaspar-Cunha, A.: Multiobjective evolutionary algorithm based on vector angle neighborhood.Swarm Evol. Comput. 37 (2017), 45-57. 10.1016/j.swevo.2017.05.005
Reference: [7] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles.Math. Program. 91 (2002), 201-213. Zbl 1049.90004, MR 1875515, 10.1007/s101070100263
Reference: [8] Ehrgott, M.: Multicriteria Optimization.Springer, Berlin (2005). Zbl 1132.90001, MR 2143243, 10.1007/3-540-27659-9
Reference: [9] Eichfelder, G.: Twenty years of continuous multiobjective optimization in the twenty-first century.EURO J. Comput. Optim. 9 (2021), Article ID 100014, 15 pages. Zbl 1530.90091, MR 4397745, 10.1016/j.ejco.2021.100014
Reference: [10] Eichfelder, G., Kirst, P., Meng, L., Stein, O.: A general branch-and-bound framework for continuous global multiobjective optimization.J. Glob. Optim. 80 (2021), 195-227. Zbl 1470.90114, MR 4260677, 10.1007/s10898-020-00984-y
Reference: [11] Fliege, J., Drummond, L. M. G., Svaiter, B. F.: Newton's method for multiobjective optimization.SIAM J. Optim. 20 (2009), 602-626. Zbl 1195.90078, MR 2515788, 10.1137/08071692X
Reference: [12] Fliege, J., Svaiter, B. F.: Steepest descent methods for multicriteria optimization.Math. Methods Oper. Res. 51 (2000), 479-494. Zbl 1054.90067, MR 1778656, 10.1007/s001860000043
Reference: [13] Guo, Z., Ersoy, O. K., Yan, X.: A multi-objective differential evolutionary algorithm with angle-based objective space division and parameter adaption for solving sodium gluconate production process and benchmark problems.Swarm Evol. Comput. 55 (2020), Article ID 100670, 12 pages. 10.1016/j.swevo.2020.100670
Reference: [14] Gupta, S., Srivastava, M.: A new scalarization function and well-posedness of vector optimization problem.Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83 (2021), 177-192. Zbl 1513.49055, MR 4407132
Reference: [15] Handl, J., Kell, D. B., Knowles, J.: Multiobjective optimization in bioinformatics and computational biology.IEEE/ACM Trans. Comput. Biolog. Bioinf. 4 (2007), 279-290. 10.1109/TCBB.2007.070203
Reference: [16] Jahn, J.: Vector Optimization: Theory, Applications, and Extensions.Springer, Berlin (2004). Zbl 1055.90065, MR 2058695, 10.1007/978-3-540-24828-6
Reference: [17] Jiang, X., Na, J.: Online surrogate multiobjective optimization algorithm for contaminated groundwater remediation designs.Appl. Math. Modelling 78 (2020), 519-538. Zbl 1481.86005, MR 4029067, 10.1016/j.apm.2019.09.053
Reference: [18] Liang, J., Xu, W., Yue, C., Yu, K., Song, H., Crisalle, O. D., Qu, B.: Multimodal multiobjective optimization with differential evolution.Swarm Evol. Comput. 44 (2019), 1028-1059. 10.1016/j.swevo.2018.10.016
Reference: [19] Pérez, L. R. Lucambio, Prudente, L. F.: Nonlinear conjugate gradient methods for vector optimization.SIAM J. Optim. 28 (2018), 2690-2720. Zbl 1401.90210, MR 3858809, 10.1137/17M1126588
Reference: [20] Marcellin, K. N., Ouattara, A., Joseph, S. K.: Multiobjective optimization of micro-gas turbines environmental polluting emissions due to their internal and external thermal losses.Am. J. Environ. Prot. 12 (2023), 1-10. 10.11648/j.ajep.20231201.11
Reference: [21] Mita, K., Fukuda, E. H., Yamashita, N.: Nonmonotone line searches for unconstrained multiobjective optimization problems.J. Glob. Optim. 75 (2019), 63-90. Zbl 1428.90155, MR 4011712, 10.1007/s10898-019-00802-0
Reference: [22] Morovati, V., Basirzadeh, H., Pourkarimi, L.: Quasi-Newton methods for multiobjective optimization problems.4OR 16 (2018), 261-294. Zbl 1407.90300, MR 3845793, 10.1007/s10288-017-0363-1
Reference: [23] Povalej, Ž.: Quasi-Newton's method for multiobjective optimization.J. Comput. Appl. Math. 255 (2014), 765-777. Zbl 1291.90316, MR 3093459, 10.1016/j.cam.2013.06.045
Reference: [24] Qu, S., Goh, M., Chan, F. T. S.: Quasi-Newton methods for solving multiobjective optimization.Oper. Res. Lett. 39 (2011), 397-399. Zbl 1235.90139, MR 2835535, 10.1016/j.orl.2011.07.008
Reference: [25] Qu, S., Goh, M., Liang, B.: Trust region methods for solving multiobjective optimization.Optim. Method Softw. 28 (2013), 796-811. Zbl 1278.90365, MR 3175444, 10.1080/10556788.2012.660483
Reference: [26] Svaiter, B. F.: The multiobjective steepest descent direction is not Lipschitz continuous, but is Hölder continuous.Oper. Res. Lett. 46 (2018), 430-433. Zbl 1525.90389, MR 3827652, 10.1016/j.orl.2018.05.008
Reference: [27] Thomann, J., Eichfelder, G.: A trust-region algorithm for heterogeneous multiobjective optimization.SIAM J. Optim. 29 (2019), 1017-1047. Zbl 1411.90311, MR 3936040, 10.1137/18M1173277
Reference: [28] Villacorta, K. D. V., Oliveira, P. R., Soubeyran, A.: A trust-region method for unconstrained multiobjective problems with applications in satisficing processes.J. Optim. Theory Appl. 160 (2014), 865-889. Zbl 1300.90045, MR 3181000, 10.1007/s10957-013-0392-7
Reference: [29] Wang, J., Hu, Y., Yu, C. K. W., Li, C., Yang, X.: Extended Newton methods for multiobjective optimization: Majorizing function technique and convergence analysis.SIAM J. Optim. 29 (2019), 2388-2421. Zbl 1422.90052, MR 4010766, 10.1137/18M1191737
Reference: [30] Yang, N.-C., Mehmood, D.: Multi-objective bee swarm optimization algorithm with minimum Manhattan distance for passive power filter optimization problems.Mathematics 10 (2022), Article ID 133, 20 pages. 10.3390/math10010133
Reference: [31] Zaaraoui, L., Mansouri, A., Smairi, N.: NMOPSO: An improved multiobjective PSO algorithm for permanent magnet motor design.U.P.B. Sci. Bull., Ser. C 84 (2022), 201-214.
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo