Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
stable eigenfunction computation; clustered eigenvalues; finite element method; shape derivative; difference quotient of eigenvalues
Summary:
The accurate computation of eigenfunctions corresponding to tightly clustered Laplacian eigenvalues remains an extremely difficult problem. Using the shape difference quotient of eigenvalues, we propose a stable computation method for the eigenfunctions of clustered eigenvalues caused by domain perturbation.
References:
[1] Davis, C., Kahan, W. M.: The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal. 7 (1970), 1-46. DOI 10.1137/0707001 | MR 0264450 | Zbl 0198.47201
[2] Endo, R., Liu, X.: The second Dirichlet eigenvalue is simple on every non-equilateral triangle, Part II: Nearly equilateral triangles. Available at https://arxiv.org/abs/2305.14063v6 (2025), 24 pages. DOI 10.48550/arXiv.2305.14063
[3] Haug, E. J., Rousselet, B.: Design sensitivity analysis in structural mechanics. II. Eigenvalue variations. J. Struct. Mech. 8 (1980), 161-186. DOI 10.1080/03601218008907358 | MR 0607803
[4] Liu, X.: Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems. SpringerBriefs in Mathematics. Springer, Singapore (2024). DOI 10.1007/978-981-97-3577-8 | MR 4807655 | Zbl 1562.65007
[5] Liu, X., Vejchodský, T.: Fully computable a posteriori error bounds for eigenfunctions. Numer. Math. 152 (2022), 183-221. DOI 10.1007/s00211-022-01304-0 | MR 4474059 | Zbl 1496.65204
[6] McCartin, B. J.: Eigenstructure of the equilateral triangle. I. The Dirichlet problem. SIAM Rev. 45 (2003), 267-287. DOI 10.1137/S003614450238720 | MR 2010379 | Zbl 1122.35311
[7] Ogita, T., Aishima, K.: Iterative refinement for symmetric eigenvalue decomposition. II. Clustered eigenvalues. Japan J. Ind. Appl. Math. 36 (2019), 435-459. DOI 10.1007/s13160-019-00348-4 | MR 3975924 | Zbl 1418.65049
[8] Parlett, B. N.: The Symmetric Eigenvalue Problem. Classics in Applied Mathematics 20. SIAM, Philadelphia (1998). DOI 10.1137/1.9781611971163 | MR 1490034 | Zbl 0885.65039
[9] Práger, M.: Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle. Appl. Math., Praha 43 (1998), 311-320. DOI 10.1023/A:1023269922178 | MR 1627985 | Zbl 0940.35059
Partner of
EuDML logo