Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
weakly almost periodicity; functional on Banach algebra; bornology; Rosenthal space; tame family; Asplund space; group algebra
Summary:
We give an affirmative answer to a question due to M. Megrelishvili, and show that for every locally compact group $G$ we have Tame$(L^{1}(G)) = $ Tame$(G)$, which means that a functional is tame over $L^{1}(G)$ if and only if it is tame as a function over $G$. In fact, it is proven that for every norm-saturated, convex vector bornology on RUC$_b(G)$, being small as a function and as a functional is the same. This proves that Asp$(L^{1}(G)) = $ Asp$(G)$ and reaffirms a well-known, similar result which states that WAP$(G) = $ WAP$(L^{1}(G))$.
References:
[1] Al-Yassin J.: Representations of Banach Algebras Subordinate to Topologically Introverted Spaces. Windsor Electronic Theses and Dissertations, University of Windsor, Windsor, 2014.
[2] Arens R.: Operations induced in function classes. Monatsh. Math. 55 (1951), 1–19. DOI 10.1007/BF01300644
[3] Burckel R. B.: Weakly Almost Periodic Functions on Semigroups. Gordon and Breach Science Publishers, New York, 1970.
[4] Davis W. J., Figiel T., Johnson W. B., Pełczyński A.: Factoring weakly compact operators. J. Functional Analysis 17 (1974), no. 3, 311–327. DOI 10.1016/0022-1236(74)90044-5
[5] Diestel J.: Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004
[6] Doran R. S., Wichmann J.: Approximate Identities and Factorization in Banach Modules. Lecture Notes in Mathematics, 768, Springer, Berlin, 1979. DOI 10.1007/BFb0098612
[7] Fabian M. J.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley and Sons, New York, 1997. Zbl 0883.46011
[8] Filali M., Neufang M., Sangani Monfared M.: Representations of Banach algebras subordinate to topologically introverted spaces. Trans. Amer. Math. Soc. 367 (2015), no. 11, 8033–8050. DOI 10.1090/tran/6435
[9] Glasner E., Megrelishvili M.: Hereditarily non-sensitive dynamical systems and linear representations. Colloq. Math. 104 (2006), no. 2, 223–283. DOI 10.4064/cm104-2-5
[10] Glasner E., Megrelishvili M.: On fixed point theorems and nonsensitivity. Israel J. Math. 190 (2012), 289–305. DOI 10.1007/s11856-011-0192-4
[11] Glasner E., Megrelishvili M.: Representations of dynamical systems on Banach spaces not containing $l_1$. Trans. Amer. Math. Soc. 364 (2012), no. 12, 6395–6424. DOI 10.1090/S0002-9947-2012-05549-8
[12] Glasner E., Megrelishvili M.: Representations of dynamical systems on Banach spaces. in Recent Progress in General Topology III, Atlantis Press, Paris, 2014, pages 399–470.
[13] Glasner E., Megrelishvili M.: Eventual nonsensitivity and tame dynamical systems. available at arXiv:1405.2588v7 [math.DS] (2016), 45 pages.
[14] Glasner E., Megrelishvili M.: More on tame dynamical systems. Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math., 2213, Springer, Cham, 2018, pages 351–392.
[15] Hewitt E., Ross K. A.: Abstract Harmonic Analysis, Vol. II, Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. Die Grundlehren der mathematischen Wissenschaften, 152, Springer, New York, 1970.
[16] Hewitt E., Ross K. A.: Abstract Harmonic Analysis, Vol. I. Structure of Topological Groups, Integration Theory, Group Representations. Die Grundlehren der mathematischen Wissenschaften, 115, Springer, Berlin, 1979.
[17] Hogbe-Nlend H.: Bornologies and Functional Analysis: Introductory Course on the Theory of Duality Topology-bornology and Its Use in Functional Analysis. North-Holland Mathematics Studies, 26, North-Holland Publishing Co., Amsterdam, 1977.
[18] Jayne J. E., Orihuela J., Pallarés A. J., Vera G.: $\sigma$-fragmentability of multivalued maps and selection theorems. J. Funct. Anal. 117 (1993), no. 2, 243–273. DOI 10.1006/jfan.1993.1127
[19] Jayne J. E., Rogers C. A.: Borel selectors for upper semicontinuous set-valued maps. Acta Math. 155 (1985), no. 1–2, 41–79. DOI 10.1007/BF02392537
[20] Kelley J. L.: General Topology. Graduate Texts in Mathematics, 27, Springer, New York, 1975. Zbl 0518.54001
[21] Kelley J. L., Namioka I.: Linear topological spaces. The University Series in Higher Mathematics, D. Van Nostrand Co., Princeton, 1963, pages 26–82. Zbl 0318.46001
[22] Kitchen J. W., Jr.: Normed modules and almost periodicity. Monatsh. Math. 70 (1966), 233–243. DOI 10.1007/BF01305304
[23] Köhler A.: Enveloping semigroups for flows. Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 179–191.
[24] Komisarchik M., Megrelishvili M.: Tameness and Rosenthal type locally convex spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 117 (2023), no. 3, Paper No. 113, 53 pages.
[25] Lau A. T.-M.: Uniformly continuous functionals on Banach algebras. Colloq. Math. 51 (1987), no. 1, 195–205. DOI 10.4064/cm-51-1-195-205
[26] Megrelishvili M. G.: Fragmentability and continuity of semigroup actions. Semigroup Forum 57 (1998), no. 1, 101–126. DOI 10.1007/PL00005960 | Zbl 0916.47029
[27] Megrelishvili M.: Fragmentability and representations of flows. in Proceedings of the 17th Summer Conference on Topology and Its Applications, Topology Proc. 27 (2003), no. 2, 497–544.
[28] Megrelishvili M.: Tame functionals on Banach algebras. in Banach Algebras and Applications, De Gruyter Proc. Math., De Gruyter, Berlin, 2020, pages 213–223.
[29] Namioka I., Phelps R. R.: Banach spaces which are Asplund spaces. Duke Math. J. 42 (1975), no. 4, 735–750. DOI 10.1215/S0012-7094-75-04261-1
[30] Neufang M., Pachl J., Salmi P.: Uniform equicontinuity, multiplier topology and continuity of convolution. Arch. Math. (Basel) 104 (2015), no. 4, 367–376. DOI 10.1007/s00013-015-0726-9
[31] Pachl J.: Uniform Spaces and Measures. Fields Institute Monographs, 30, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, 2013. DOI 10.1007/978-1-4614-5058-0
[32] Rosenthal H. P.: A characterization of Banach spaces containing $l^1$. Proc. Nat. Acad. Sci. U.S.A. 71 (1974), no. 6, 2411–2413. DOI 10.1073/pnas.71.6.2411
[33] Talagrand M.: Pettis integral and measure theory. Mem. Amer. Math. Soc. 51 (1984), no. 307, 224 pages.
[34] Ülger A.: Continuity of weakly almost periodic functionals on $L^{1}(G)$. Quart. J. Math. Oxford Ser. (2) 37 (1986), no. 148, 495–497.
Partner of
EuDML logo