Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
nonlinear nonlocal elliptic problem; diffusion coefficient; fixed point; weak solution; existence; uniqueness
Summary:
Under weak conditions on the diffusion coefficients, we prove existence theorems of weak solutions for some nonlinear nonlocal elliptic problems. Our approach is based on the Schauder fixed point theorem combined with an approximation technique. We also give uniqueness results and an example to support them.
References:
[1] Alves C. O., Boudjeriou T.: Existence of solution for a class of nonlocal problem via dynamical methods. Rend. Circ. Mat. Palermo (2) 71 (2022), no. 2, 611–632. DOI 10.1007/s12215-021-00644-4
[2] Alves C. O., Covei D.-P.: Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method. Nonlinear Anal. Real World Appl. 23 (2015), 1–8.
[3] Arcoya D., Leonori T., Primo A.: Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano theorem. Acta Appl. Math. 127 (2013), 87–104. DOI 10.1007/s10440-012-9792-1
[4] Boccardo L., Murat F., Puel J.-P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Math. Pura Appl. (4) 152 (1988), 183–196.
[5] Bousselsal M., Zaouche E.: Existence of solution for nonlocal heterogeneous elliptic problems. Mediterr. J. Math. 17 (2020), no. 4, Paper No. 129, 10 pages. DOI 10.1007/s00009-020-01564-w
[6] Carrillo J. A.: On a nonlocal elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction. Nonlinear Anal. 32 (1998), no. 1, 97–115. DOI 10.1016/S0362-546X(97)00455-0
[7] Chipot M., Corrêa F. J. S. A.: Boundary layer solutions to functional elliptic equations. Bull. Braz. Math. Soc. (N.S.) 40 (2009), no. 3, 381–393. DOI 10.1007/s00574-009-0017-9
[8] Chipot M., Lovat B.: Some remarks on nonlocal elliptic and parabolic problems. Proc. of the Second World Congress of Nonlinear Analysts, Part 7, Nonlinear Anal. 30 (1997), no. 7, 4619–4627.
[9] Chipot M., Lovat B.: On the asymptotic behaviour of some nonlocal problems. Positivity 3 (1999), no. 1, 65–81. DOI 10.1023/A:1009706118910
[10] Chipot M., Rodrigues J.-F.: On a class of nonlocal nonlinear elliptic problems. RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 3, 447–467. DOI 10.1051/m2an/1992260304471
[11] Chipot M., Roy P.: Existence results for some functional elliptic equations. Differential Integral Equations 27 (2014), no. 3–4, 289–300. DOI 10.57262/die/1391091367
[12] Ciarlet P. G.: Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, 2013.
[13] Corrêa F. J. S. A.: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. 59 (2004), no. 7, 1147–1155. DOI 10.1016/j.na.2004.08.010
[14] Corrêa F. J. S. A., Menezes S. D. B., Ferreira J.: On a class of problems involving a nonlocal operator. Appl. Math. Comput. 147 (2004), no. 2, 475–489.
[15] Corrêa F. J. S. A., de Morais Filho D. C.: On a class of nonlocal elliptic problems via Galerkin method. J. Math. Anal. Appl. 310 (2005), no. 1, 177–187. DOI 10.1016/j.jmaa.2005.01.052
[16] Figueiredo-Sousa T. S., Morales-Rodrigo C., Suárez A.: A non-local non-autonomous diffusion problem: linear and sublinear cases. Z. Angew. Math. Phys. 68 (2017), no. 5, Paper No. 108, 20 pages. DOI 10.1007/s00033-017-0856-y
[17] Liang F., Qiao H.: Existence and uniqueness for some nonlocal elliptic problem. Appl. Anal. 97 (2018), no. 15, 2618–2625. DOI 10.1080/00036811.2017.1382687
[18] Lions J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris; Gauthier–Villars, Paris, 1969 (French).
[19] Roy P.: Existence results for some nonlocal problems. Differ. Equ. Appl. 6 (2014), no. 3, 361–381.
[20] Stańczy R.: Nonlocal elliptic equations. Proc. of the Third World Congress of Nonlinear Analysts, Part 5, Catania, 2000, Nonlinear Anal. 47 (2001), no. 5, 3579–3584. DOI 10.1016/S0362-546X(01)00478-3
[21] Yan B., Ma T.: The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems. Bound. Value Probl. 2016 (2016), Paper No. 165, 35 pages.
[22] Yan B., Ren Q.: Existence, uniqueness and multiplicity of positive solutions for some nonlocal singular elliptic problems. Electron. J. Differential Equations 2017 (2017), Paper No. 138, 21 pages.
[23] Yan B., Wang D.: The multiplicity of positive solutions for a class of nonlocal elliptic problem. J. Math. Anal. Appl. 442 (2016), no. 1, 72–102. DOI 10.1016/j.jmaa.2016.04.023
[24] Zaouche E.: Nontrivial weak solutions for nonlocal nonhomogeneous elliptic problems. Appl. Anal. 101 (2022), no. 4, 1261–1270. DOI 10.1080/00036811.2020.1778674
[25] Zaouche E.: Existence theorems of nontrivial and positive solutions for nonlocal inhomogeneous elliptic problems. Ric. Mat. 72 (2023), no. 2, 949–960. DOI 10.1007/s11587-021-00612-1
Partner of
EuDML logo