[1] Alves C. O., Boudjeriou T.:
Existence of solution for a class of nonlocal problem via dynamical methods. Rend. Circ. Mat. Palermo (2) 71 (2022), no. 2, 611–632.
DOI 10.1007/s12215-021-00644-4
[2] Alves C. O., Covei D.-P.: Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method. Nonlinear Anal. Real World Appl. 23 (2015), 1–8.
[3] Arcoya D., Leonori T., Primo A.:
Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano theorem. Acta Appl. Math. 127 (2013), 87–104.
DOI 10.1007/s10440-012-9792-1
[4] Boccardo L., Murat F., Puel J.-P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Math. Pura Appl. (4) 152 (1988), 183–196.
[5] Bousselsal M., Zaouche E.:
Existence of solution for nonlocal heterogeneous elliptic problems. Mediterr. J. Math. 17 (2020), no. 4, Paper No. 129, 10 pages.
DOI 10.1007/s00009-020-01564-w
[6] Carrillo J. A.:
On a nonlocal elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction. Nonlinear Anal. 32 (1998), no. 1, 97–115.
DOI 10.1016/S0362-546X(97)00455-0
[7] Chipot M., Corrêa F. J. S. A.:
Boundary layer solutions to functional elliptic equations. Bull. Braz. Math. Soc. (N.S.) 40 (2009), no. 3, 381–393.
DOI 10.1007/s00574-009-0017-9
[8] Chipot M., Lovat B.: Some remarks on nonlocal elliptic and parabolic problems. Proc. of the Second World Congress of Nonlinear Analysts, Part 7, Nonlinear Anal. 30 (1997), no. 7, 4619–4627.
[9] Chipot M., Lovat B.:
On the asymptotic behaviour of some nonlocal problems. Positivity 3 (1999), no. 1, 65–81.
DOI 10.1023/A:1009706118910
[10] Chipot M., Rodrigues J.-F.:
On a class of nonlocal nonlinear elliptic problems. RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 3, 447–467.
DOI 10.1051/m2an/1992260304471
[11] Chipot M., Roy P.:
Existence results for some functional elliptic equations. Differential Integral Equations 27 (2014), no. 3–4, 289–300.
DOI 10.57262/die/1391091367
[12] Ciarlet P. G.: Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, 2013.
[13] Corrêa F. J. S. A.:
On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. 59 (2004), no. 7, 1147–1155.
DOI 10.1016/j.na.2004.08.010
[14] Corrêa F. J. S. A., Menezes S. D. B., Ferreira J.: On a class of problems involving a nonlocal operator. Appl. Math. Comput. 147 (2004), no. 2, 475–489.
[15] Corrêa F. J. S. A., de Morais Filho D. C.:
On a class of nonlocal elliptic problems via Galerkin method. J. Math. Anal. Appl. 310 (2005), no. 1, 177–187.
DOI 10.1016/j.jmaa.2005.01.052
[16] Figueiredo-Sousa T. S., Morales-Rodrigo C., Suárez A.:
A non-local non-autonomous diffusion problem: linear and sublinear cases. Z. Angew. Math. Phys. 68 (2017), no. 5, Paper No. 108, 20 pages.
DOI 10.1007/s00033-017-0856-y
[18] Lions J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris; Gauthier–Villars, Paris, 1969 (French).
[19] Roy P.: Existence results for some nonlocal problems. Differ. Equ. Appl. 6 (2014), no. 3, 361–381.
[20] Stańczy R.:
Nonlocal elliptic equations. Proc. of the Third World Congress of Nonlinear Analysts, Part 5, Catania, 2000, Nonlinear Anal. 47 (2001), no. 5, 3579–3584.
DOI 10.1016/S0362-546X(01)00478-3
[21] Yan B., Ma T.: The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems. Bound. Value Probl. 2016 (2016), Paper No. 165, 35 pages.
[22] Yan B., Ren Q.: Existence, uniqueness and multiplicity of positive solutions for some nonlocal singular elliptic problems. Electron. J. Differential Equations 2017 (2017), Paper No. 138, 21 pages.
[23] Yan B., Wang D.:
The multiplicity of positive solutions for a class of nonlocal elliptic problem. J. Math. Anal. Appl. 442 (2016), no. 1, 72–102.
DOI 10.1016/j.jmaa.2016.04.023
[24] Zaouche E.:
Nontrivial weak solutions for nonlocal nonhomogeneous elliptic problems. Appl. Anal. 101 (2022), no. 4, 1261–1270.
DOI 10.1080/00036811.2020.1778674
[25] Zaouche E.:
Existence theorems of nontrivial and positive solutions for nonlocal inhomogeneous elliptic problems. Ric. Mat. 72 (2023), no. 2, 949–960.
DOI 10.1007/s11587-021-00612-1