Previous |  Up |  Next

Article

Title: Some nonlinear nonlocal elliptic problems under weak conditions on the diffusion coefficients (English)
Author: Rezig, Said
Author: Zaouche, Elmehdi
Author: Souilah, Rezak
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 65
Issue: 2
Year: 2024
Pages: 159-185
Summary lang: English
.
Category: math
.
Summary: Under weak conditions on the diffusion coefficients, we prove existence theorems of weak solutions for some nonlinear nonlocal elliptic problems. Our approach is based on the Schauder fixed point theorem combined with an approximation technique. We also give uniqueness results and an example to support them. (English)
Keyword: nonlinear nonlocal elliptic problem
Keyword: diffusion coefficient
Keyword: fixed point
Keyword: weak solution
Keyword: existence
Keyword: uniqueness
MSC: 35D30
MSC: 35J60
DOI: 10.14712/1213-7243.2025.011
.
Date available: 2025-11-12T13:16:01Z
Last updated: 2025-11-14
Stable URL: http://hdl.handle.net/10338.dmlcz/153167
.
Reference: [1] Alves C. O., Boudjeriou T.: Existence of solution for a class of nonlocal problem via dynamical methods.Rend. Circ. Mat. Palermo (2) 71 (2022), no. 2, 611–632. 10.1007/s12215-021-00644-4
Reference: [2] Alves C. O., Covei D.-P.: Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method.Nonlinear Anal. Real World Appl. 23 (2015), 1–8.
Reference: [3] Arcoya D., Leonori T., Primo A.: Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano theorem.Acta Appl. Math. 127 (2013), 87–104. 10.1007/s10440-012-9792-1
Reference: [4] Boccardo L., Murat F., Puel J.-P.: Existence of bounded solutions for nonlinear elliptic unilateral problems.Ann. Math. Pura Appl. (4) 152 (1988), 183–196.
Reference: [5] Bousselsal M., Zaouche E.: Existence of solution for nonlocal heterogeneous elliptic problems.Mediterr. J. Math. 17 (2020), no. 4, Paper No. 129, 10 pages. 10.1007/s00009-020-01564-w
Reference: [6] Carrillo J. A.: On a nonlocal elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction.Nonlinear Anal. 32 (1998), no. 1, 97–115. 10.1016/S0362-546X(97)00455-0
Reference: [7] Chipot M., Corrêa F. J. S. A.: Boundary layer solutions to functional elliptic equations.Bull. Braz. Math. Soc. (N.S.) 40 (2009), no. 3, 381–393. 10.1007/s00574-009-0017-9
Reference: [8] Chipot M., Lovat B.: Some remarks on nonlocal elliptic and parabolic problems.Proc. of the Second World Congress of Nonlinear Analysts, Part 7, Nonlinear Anal. 30 (1997), no. 7, 4619–4627.
Reference: [9] Chipot M., Lovat B.: On the asymptotic behaviour of some nonlocal problems.Positivity 3 (1999), no. 1, 65–81. 10.1023/A:1009706118910
Reference: [10] Chipot M., Rodrigues J.-F.: On a class of nonlocal nonlinear elliptic problems.RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 3, 447–467. 10.1051/m2an/1992260304471
Reference: [11] Chipot M., Roy P.: Existence results for some functional elliptic equations.Differential Integral Equations 27 (2014), no. 3–4, 289–300. 10.57262/die/1391091367
Reference: [12] Ciarlet P. G.: Linear and Nonlinear Functional Analysis with Applications.Society for Industrial and Applied Mathematics, Philadelphia, 2013.
Reference: [13] Corrêa F. J. S. A.: On positive solutions of nonlocal and nonvariational elliptic problems.Nonlinear Anal. 59 (2004), no. 7, 1147–1155. 10.1016/j.na.2004.08.010
Reference: [14] Corrêa F. J. S. A., Menezes S. D. B., Ferreira J.: On a class of problems involving a nonlocal operator.Appl. Math. Comput. 147 (2004), no. 2, 475–489.
Reference: [15] Corrêa F. J. S. A., de Morais Filho D. C.: On a class of nonlocal elliptic problems via Galerkin method.J. Math. Anal. Appl. 310 (2005), no. 1, 177–187. 10.1016/j.jmaa.2005.01.052
Reference: [16] Figueiredo-Sousa T. S., Morales-Rodrigo C., Suárez A.: A non-local non-autonomous diffusion problem: linear and sublinear cases.Z. Angew. Math. Phys. 68 (2017), no. 5, Paper No. 108, 20 pages. 10.1007/s00033-017-0856-y
Reference: [17] Liang F., Qiao H.: Existence and uniqueness for some nonlocal elliptic problem.Appl. Anal. 97 (2018), no. 15, 2618–2625. 10.1080/00036811.2017.1382687
Reference: [18] Lions J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris; Gauthier–Villars, Paris, 1969 (French).
Reference: [19] Roy P.: Existence results for some nonlocal problems.Differ. Equ. Appl. 6 (2014), no. 3, 361–381.
Reference: [20] Stańczy R.: Nonlocal elliptic equations.Proc. of the Third World Congress of Nonlinear Analysts, Part 5, Catania, 2000, Nonlinear Anal. 47 (2001), no. 5, 3579–3584. 10.1016/S0362-546X(01)00478-3
Reference: [21] Yan B., Ma T.: The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems.Bound. Value Probl. 2016 (2016), Paper No. 165, 35 pages.
Reference: [22] Yan B., Ren Q.: Existence, uniqueness and multiplicity of positive solutions for some nonlocal singular elliptic problems.Electron. J. Differential Equations 2017 (2017), Paper No. 138, 21 pages.
Reference: [23] Yan B., Wang D.: The multiplicity of positive solutions for a class of nonlocal elliptic problem.J. Math. Anal. Appl. 442 (2016), no. 1, 72–102. 10.1016/j.jmaa.2016.04.023
Reference: [24] Zaouche E.: Nontrivial weak solutions for nonlocal nonhomogeneous elliptic problems.Appl. Anal. 101 (2022), no. 4, 1261–1270. 10.1080/00036811.2020.1778674
Reference: [25] Zaouche E.: Existence theorems of nontrivial and positive solutions for nonlocal inhomogeneous elliptic problems.Ric. Mat. 72 (2023), no. 2, 949–960. 10.1007/s11587-021-00612-1
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo