| Title: | Degenerate elliptic equations with variable exponents and multiple types of terms (English) |
| Author: | Teyar, Radjia |
| Author: | Khelifi, Hichem |
| Author: | Mokhtari, Fares |
| Language: | English |
| Journal: | Commentationes Mathematicae Universitatis Carolinae |
| ISSN: | 0010-2628 (print) |
| ISSN: | 1213-7243 (online) |
| Volume: | 65 |
| Issue: | 2 |
| Year: | 2024 |
| Pages: | 187-201 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | We present a comprehensive analysis of the existence and regularity of distributional solutions for a given class of nonlinear degenerate elliptic equations. The equations under consideration contain singular gradient lower order terms and are related to the $L^{m}$ data, where the exponent $m$ satisfies $1<m<{d}/{p^{-}}$. To deal with this problem, we use a functional framework that includes Lebesgue--Sobolev spaces with variable exponents. Our findings provide valuable additions to the previous research discussed in Nonlinear degenerate $p(x)$-Laplacian equation with singular gradient and lower order term (2023) by H. Khelifi and M. A. Zouatini. (English) |
| Keyword: | degenerate elliptic equation |
| Keyword: | singular gradient lower order term |
| Keyword: | existence and regularity |
| Keyword: | Harnack inequality |
| Keyword: | $L^{m}$-data |
| MSC: | 35J62 |
| MSC: | 35J70 |
| MSC: | 35J75 |
| DOI: | 10.14712/1213-7243.2025.007 |
| . | |
| Date available: | 2025-11-12T14:07:55Z |
| Last updated: | 2025-11-14 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153168 |
| . | |
| Reference: | [1] Alvino A., Boccardo L., Ferone V., Orsina L., Trombetti G.: Existence results for nonlinear elliptic equations with degenerate coercivity.Ann. Mat. Pura Appl. (4) 182 (2003), no. 1, 53–79. 10.1007/s10231-002-0056-y |
| Reference: | [2] Bensoussan A., Boccardo L., Murat F.: On a nonlinear partial differential equation having natural growth terms and unbounded solutions.Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 4, 347–364. 10.1016/s0294-1449(16)30342-0 |
| Reference: | [3] Boccardo L.: Quasilinear elliptic equations with natural growth terms: the regularizing effects of lower order terms.J. Nonlinear Convex Anal. 7 (2006), no. 3, 355–365. |
| Reference: | [4] Boccardo L.: Dirichlet problems with singular and gradient quadratic lower order terms.ESAIM Control Optim. Calc. Var. 14 (2008), no. 3, 411–426. 10.1051/cocv:2008031 |
| Reference: | [5] Boccardo L., Dall'Aglio A., Orsina L.: Existence and regularity results for some elliptic equations with degenerate coercivity.Atti Sem. Mat. Fis. Univ. Modena 46 (1998), suppl., 51–81. |
| Reference: | [6] Croce G.: The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity.Rend. Mat. Appl. (7) 27 (2007), no. 3–4, 299–314. |
| Reference: | [7] Croce G.: An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term.Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 3, 507–530. |
| Reference: | [8] Diening L., Harjulehto T., Hästö P., Růžička M.: Lebesque and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011. |
| Reference: | [9] Fan X., Zhao D.: On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$.J. Math. Anal. Appl. 263 (2001), no. 2, 424–446. |
| Reference: | [10] Khelifi H.: Existence and regularity for solution to a degenerate problem with singular gradient lower order term.Moroccan Journal of Pure and Applied Analysis 8 (2022), no. 3, 310–327. 10.2478/mjpaa-2022-0022 |
| Reference: | [11] Khelifi H.: Anisotropic degenerate elliptic problem with singular gradient lower order term.Boll. Unione Mat. Ital. 17 (2024), no. 1, 149–174. MR 4703444, 10.1007/s40574-023-00395-3 |
| Reference: | [12] Khelifi H.: Existence and regularity for a degenerate problem with singular gradient lower order term.Mem. Differ. Equ. Math. Phys. 91 (2024), 51–66. |
| Reference: | [13] Khelifi H., El Hadfi Y., Addoun R. I.: Nonlinear degenerate $p$-Laplacian elliptic equations with singular gradient lower order term.Poincare J. Anal. Appl. 10 (2023), no. 1, 87–104. 10.46753/pjaa.2023.v010i01.007 |
| Reference: | [14] Khelifi H., Zouatini M. A.: Nonlinear degenerate $p(x)$-Laplacian equation with singular gradient and lower order term.Indian. J. Pure. Appl. Math. 56 (2025), no. 1, 46–66. 10.1007/s13226-023-00460-9 |
| Reference: | [15] Souilah R.: Existence and regularity results for some elliptic equations with degenerate coercivity and singular quadratic lower-order terms.Mediterr. J. Math. 16 (2019), no. 4, Paper No. 87, 21 pages. 10.1007/s00009-019-1360-8 |
| Reference: | [16] Zhan C., Martínez-Aparicio P. J.: Entropy solutions for nonlinear elliptic equations with variable exponents.C. Elect. J. Differ. Equ. 92 (2014), 1–14. |
| Reference: | [17] Zouatini M. A., Khelifi H., Mokhtari F.: Anisotropic degenerate elliptic problem with a singular nonlinearity.Adv. Oper. Theory 8 (2023), no. 1, Paper No. 13, 24 pages. 10.1007/s43036-022-00240-y |
| Reference: | [18] Zouatini M. A., Mokhtari F., Khelifi H.: Degenerate elliptic problem with singular gradient lower order term and variable exponents.Mathematical Modeling and Computing 10 (2023), no. 1, 133–146. 10.23939/mmc2023.01.133 |
| . |
Fulltext not available (moving wall 24 months)