| Title: | Statistical convergence of order $\alpha$ in topology and its applications to selection principles (English) |
| Author: | Datta, Tanmayee |
| Author: | Bal, Prasenjit |
| Author: | Das, Parthiba |
| Language: | English |
| Journal: | Commentationes Mathematicae Universitatis Carolinae |
| ISSN: | 0010-2628 (print) |
| ISSN: | 1213-7243 (online) |
| Volume: | 65 |
| Issue: | 2 |
| Year: | 2024 |
| Pages: | 239-257 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | The statistical convergence in a topological space is constrained in this study up to order $\alpha$, where $\alpha \in (0, 1)$. A fresh group of open covers (namely $s^{\alpha}$-$\gamma$ covers) and an entirely novel category of denseness (namely $s^{\alpha}$-denseness) are proposed using this notion of $s^{\alpha}$-convergence, which has been used to study various topological aspects of $s^{\alpha}$-density. It has been revealed that the class of $s^{\alpha}$-$\gamma$ coverings falls somewhere between the class of $\gamma$ covers and the class of $s$-$\gamma$ covers. The influence of $s^{\alpha}$-$\gamma$ covers in topological games and selection principles are also investigated. (English) |
| Keyword: | asymptotic density |
| Keyword: | statistical convergence |
| Keyword: | $\gamma$ cover |
| Keyword: | selection principle |
| MSC: | 54B20 |
| MSC: | 54C35 |
| MSC: | 54D20 |
| DOI: | 10.14712/1213-7243.2025.010 |
| . | |
| Date available: | 2025-11-12T15:49:03Z |
| Last updated: | 2025-11-14 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153171 |
| . | |
| Reference: | [1] Bal P.: A countable intersection like characterization of Star–Lindelöf spaces.Researches in Mathematics 31 (2023), no. 2, 3–7. 10.15421/242308 |
| Reference: | [2] Bal P.: On strongly star $g$-compactness of topological spaces.Tatra Mt. Math. Publ. 85 (2023), 89–100. |
| Reference: | [3] Bal P.: On the class of $I$-$\gamma$ open cover and $I$-$St$-$\gamma$ open covers.Hacettepe Journal of Mathematics and Statistics 52 (2023), no. 3, 630–639. |
| Reference: | [4] Bal P., De R.: On strongly star semi-compactness of topological spaces.Khayyam J. Math. 9 (2023), no. 1, 54–60. |
| Reference: | [5] Bal P., Kočinac L. D. R.: On selectively star-ccc spaces.Topology Appl. 281 (2020), Art. No. 107184, 8 pages. |
| Reference: | [6] Bal P., Rakshit D.: A variation of the class of statistical $\gamma$ covers.Topol. Algebra Appl. 11 (2023), no. 1, 20230101, 9 pages. |
| Reference: | [7] Bal P., Rakshit D., Sarkar S.: Countable compactness modulo an ideal of natural numbers.Ural Math. J. 9 (2023), no. 2, 28–35. 10.15826/umj.2023.2.002 |
| Reference: | [8] Bhunia S., Das P., Pal S. K.: Restricting statistical convergence.Acta Math. Hungar. 134 (2012), no. 1–2, 153–161. 10.1007/s10474-011-0122-2 |
| Reference: | [9] Çolak R.: Statistical convergence of order $\alpha$.Acta Mathematica Scientia 31 (2010), no. 3, 121–129; in Modern Methods in Analysis and Its Applications, Anamaya Publication, New Delhi, 2010, pages 121–129. |
| Reference: | [10] Çolak R., Bektaş Ç. A.: $\lambda$-statistical convergence of order $\alpha$.Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011), no. 3, 953–959. |
| Reference: | [11] Connor J. S.: The statistical and strong $p$-Cesàro convergence of sequences.Analysis 8 (1988), no. 1–2, 47–63. 10.1524/anly.1988.8.12.47 |
| Reference: | [12] Das P.: Certain types of open covers and selection principles using ideals.Houston J. Math. 39 (2013), no. 2, 637–650. |
| Reference: | [13] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001 |
| Reference: | [14] Fast H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241–244 (French). Zbl 0044.33605, 10.4064/cm-2-3-4-241-244 |
| Reference: | [15] Fridy J. A.: On statistical convergence.Analysis 5 (1985), no. 4, 301–313. Zbl 0588.40001, 10.1524/anly.1985.5.4.301 |
| Reference: | [16] Kočinac L. D. R.: Selected results on selection principles.in: Proc. of the 3rd Seminar on Geometry and Topology, Tabriz, 2004, pages 71–104. |
| Reference: | [17] Kočinac L. D. R.: Selection principles related to $\alpha_i$-properties.Taiwanese J. Math. 12 (2008), no. 3, 561–571. |
| Reference: | [18] Di Maio G., Kočinac L. D. R.: Statistical convergence in topology.Topology Appl. 156 (2008), no. 1, 28–45. Zbl 1155.54004, 10.1016/j.topol.2008.01.015 |
| Reference: | [19] Scheepers M.: Selection principles and covering properties in topology.Note Mat. 22 (2003/2004), no. 2, 3–41. |
| Reference: | [20] Schoenberg I. J.: The integrability of certain functions and related summability methods.Amer. Math. Monthly 66 (1959), 361–375. Zbl 0089.04002, 10.1080/00029890.1959.11989303 |
| Reference: | [21] Zygmund A.: Trigonometrical Series.Monogr. Mat., 5, PWN-Państwowe Wydawnictwo Naukowe, Warszawa, 1935. Zbl 0065.05604 |
| . |
Fulltext not available (moving wall 24 months)