Previous |  Up |  Next

Article

Title: On proper colorings of functions (English)
Author: Csernák, Tamás
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 65
Issue: 2
Year: 2024
Pages: 215-238
Summary lang: English
.
Category: math
.
Summary: We investigate the infinite version of the $k$-switch problem of D. Greenwell and L. Lovász. A function $F\colon ^{\lambda}\kappa \to \kappa $ is a proper coloring if $F(x)\ne F(y)$ whenever $x$ and $y$ are totally different elements of $^{\lambda} \kappa $, i.e. $x(i)\ne y(i)$ for each $i\in \lambda$. We call $F$ (i) weakly uniform if and only if there are pairwise totally different $\{{r_{\alpha}:} \alpha<\kappa\}\subset ^{\lambda}\kappa$ with $F(r_{\alpha})=\alpha$; (ii) tight if no proper coloring $G\colon ^{\lambda}\kappa \to \kappa$ differs from $F$ at exactly one point. We prove that a proper coloring $F\colon ^{\lambda}\kappa\to \kappa$ is weakly uniform if and only if there is a ${\kappa}^{+}$-complete ultrafilter $\mathscr{U}$ on $\lambda$ and there is a permutation $\pi\in {\rm Sym}(\kappa)$ such that for each $x\in ^{\lambda}\kappa$, $$ F(x)=\pi(\alpha) \Leftrightarrow \{i\in \lambda\colon x(i)=\alpha\} \in \mathscr{U}. $$ We also show that there are tight proper colorings which cannot be obtained in this way. (English)
Keyword: power of graph
Keyword: $k$-switch problem
Keyword: ultrafilter
Keyword: tight coloring
Keyword: finite independence
MSC: 05C15
MSC: 05C63
MSC: 05C76
DOI: 10.14712/1213-7243.2025.012
.
Date available: 2025-11-12T14:48:05Z
Last updated: 2025-11-14
Stable URL: http://hdl.handle.net/10338.dmlcz/153170
.
Reference: [1] Komjáth P., Totik V.: Ultrafilters.Amer. Math. Monthly 115 (2008), no. 1, 33–44. 10.1080/00029890.2008.11920493
Reference: [2] Greenwell D., Lovász L.: Applications of product colouring.Acta Math. Acad. Sci. Hungar. 25 (1974), 335–340. 10.1007/BF01886093
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo