[1] Addario-Berry, L., Dalal, K., McDiarmid, C., Reed, B.A., Thomason, A.:
Vertex-colouring edge-weightings. Combinatorica 27 (2007), 1–12.
DOI 10.1007/s00493-007-0041-6
[2] Addario-Berry, L., Dalal, K., Reed, B.A.:
Degree constrainted subgraphs. Discrete Appl. Math. 156 (2008), 1168–1174.
DOI 10.1016/j.dam.2007.05.059
[3] Aigner, M., Triesch, E.:
Irregular assignments of trees and forests. SIAM J. Discrete Math. 3 (1990), no. 4, 439–449.
DOI 10.1137/0403038
[5] Alon, N., Kaplan, G., Lev, A., Roditty, Y., Yuster, R.:
Dence graphs are antimagic. J. Graph Theory 47 (2004), 297–309.
DOI 10.1002/jgt.20027
[7] Chartrand, G., Jacobson, M.S., Lehel, J., Oellermann, O.R., Ruiz, S., Saba, F.: Irregular networks. Congr. Numer. 64 (1988), 187–192.
[8] Chartrand, G., Thomas, T., Zhang, P.: A New Look at Hamiltonian Walks. Bull. Inst. Combin. Appl. 42 (2004), 37–52.
[9] Dzúrik, M.:
An upper bound of a generalized upper Hamiltonian number of a graph. Arch. Math. (Brno) 57 (2021), 299–311.
DOI 10.5817/AM2021-5-299
[10] Dzúrik, M.: Combinatorial spectra of graphs. arXiv preprint arXiv:2311.11682 (2023).
[12] Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture.
[13] Kalkowski, M., Karoński, M., Pfender, F.:
A new upper bound for the irregularity strength of graphs. SIAM J. Discrete Math. 25 (2011), no. 3, 1319–1321.
DOI 10.1137/090774112
[14] Karoński, M., Łuczak, T., Thomason, A.:
Edge weights and vertex colours. J. Combin. Theory Ser. B 91 (2004), 151–157.
DOI 10.1016/j.jctb.2003.12.001
[17] ReVelle, C.S.: Can you protect the Roman Empire?. Johns Hopkins Magazine 49 (1997), 40.
[18] Ringel, G., Hartsfield, N.: Pearls in Graph Theory. Academic Press, 1994.
[19] Roushini Leely Pushpam, P., Malini Mai, T.N.M.: Edge Roman domination in graphs. J. Combin. Math. Combin. Comput. 69 (2009), 175–182.
[21] Zhu, Xuding, Balakrishnan, R.: Combinatorial Nullstellensatz With Applications to Graph Colouring. Taylor and Francis, 2022.