Previous |  Up |  Next

Article

Title: Combinatorial spectra using polynomials (English)
Author: Cichacz, Sylwia
Author: Dzúrik, Martin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 61
Issue: 4
Year: 2025
Pages: 151-165
Summary lang: English
.
Category: math
.
Summary: In this paper, we would like to introduce some new methods for studying magic type-colorings of graphs or domination of graphs, based on the combinatorial spectrum on polynomial rings. We hope that this concept will be potentially useful for the graph theorists. (English)
Keyword: Hamiltonian spectra
Keyword: combinatorial spectra
Keyword: domination
Keyword: 1-2-3 labeling
Keyword: antimagic
Keyword: graph
Keyword: graph theory
Keyword: coloring
MSC: 05C12
MSC: 05C15
MSC: 05C25
MSC: 05C40
DOI: 10.5817/AM2025-4-151
.
Date available: 2025-12-19T13:54:38Z
Last updated: 2025-12-19
Stable URL: http://hdl.handle.net/10338.dmlcz/153202
.
Reference: [1] Addario-Berry, L., Dalal, K., McDiarmid, C., Reed, B.A., Thomason, A.: Vertex-colouring edge-weightings.Combinatorica 27 (2007), 1–12. 10.1007/s00493-007-0041-6
Reference: [2] Addario-Berry, L., Dalal, K., Reed, B.A.: Degree constrainted subgraphs.Discrete Appl. Math. 156 (2008), 1168–1174. 10.1016/j.dam.2007.05.059
Reference: [3] Aigner, M., Triesch, E.: Irregular assignments of trees and forests.SIAM J. Discrete Math. 3 (1990), no. 4, 439–449. 10.1137/0403038
Reference: [4] Alon, N.: Combinatorial nullstellensatz.Combin. Probab. Comput. 8 (1999), 7–29. 10.1017/S0963548398003411
Reference: [5] Alon, N., Kaplan, G., Lev, A., Roditty, Y., Yuster, R.: Dence graphs are antimagic.J. Graph Theory 47 (2004), 297–309. 10.1002/jgt.20027
Reference: [6] Amar, D., Togni, O.: Irregularity strength of trees.Discrete Math. 190 (1998), no. 1, 15–38. 10.1016/S0012-365X(98)00112-5
Reference: [7] Chartrand, G., Jacobson, M.S., Lehel, J., Oellermann, O.R., Ruiz, S., Saba, F.: Irregular networks.Congr. Numer. 64 (1988), 187–192.
Reference: [8] Chartrand, G., Thomas, T., Zhang, P.: A New Look at Hamiltonian Walks.Bull. Inst. Combin. Appl. 42 (2004), 37–52.
Reference: [9] Dzúrik, M.: An upper bound of a generalized upper Hamiltonian number of a graph.Arch. Math. (Brno) 57 (2021), 299–311. 10.5817/AM2021-5-299
Reference: [10] Dzúrik, M.: Combinatorial spectra of graphs.arXiv preprint arXiv:2311.11682 (2023).
Reference: [11] Goodman, S.E., Hedetniemi, S.T.: On Hamiltonian walks in graphs.SIAM J. Comput. 3 (1974), 214–221. Zbl 0269.05113, 10.1137/0203017
Reference: [12] Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture.
Reference: [13] Kalkowski, M., Karoński, M., Pfender, F.: A new upper bound for the irregularity strength of graphs.SIAM J. Discrete Math. 25 (2011), no. 3, 1319–1321. 10.1137/090774112
Reference: [14] Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colours.J. Combin. Theory Ser. B 91 (2004), 151–157. 10.1016/j.jctb.2003.12.001
Reference: [15] Keusch, R.: Vertex-Coloring Graphs with 4-Edge-Weightings.Combinatorica 43 (2023), 651–658. 10.1007/s00493-023-00027-6
Reference: [16] Keusch, R.: A solution to the 1-2-3 conjecture.J. Combin. Theory Ser. B 166 (2024), 183–202. 10.1016/j.jctb.2024.01.002
Reference: [17] ReVelle, C.S.: Can you protect the Roman Empire?.Johns Hopkins Magazine 49 (1997), 40.
Reference: [18] Ringel, G., Hartsfield, N.: Pearls in Graph Theory.Academic Press, 1994.
Reference: [19] Roushini Leely Pushpam, P., Malini Mai, T.N.M.: Edge Roman domination in graphs.J. Combin. Math. Combin. Comput. 69 (2009), 175–182.
Reference: [20] Wang, T., Yu, Q.: On vertex-coloring 13-edge-weighting.Front. Math. China 3 (2008), 581–587. 10.1007/s11464-008-0041-x
Reference: [21] Zhu, Xuding, Balakrishnan, R.: Combinatorial Nullstellensatz With Applications to Graph Colouring.Taylor and Francis, 2022.
.

Files

Files Size Format View
ArchMathRetro_061-2025-4_2.pdf 472.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo