Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
iterative method; preconditioning; finite elements; domain decomposition; high-performance computing; homogenization; uncertainty; geoscience application
Summary:
This special issue is a nice opportunity to honor Professor Radim Blaheta, a well-known Czech numerical mathematician. It was supported by his former collaborators, colleagues, friends, and students. Some of them have also contributed to this issue.
References:
[1] Béreš, M.: Methods for the Solution of Differential Equations with Uncertainties in Parameters. Ph.D. Thesis. VŠB--Technical University of Ostrava, Ostrava (2022), Available at https://dspace.vsb.cz/handle/10084/151354\kern0pt
[2] Blaheta, R.: A multilevel method with correction by aggregation for solving discrete elliptic problems. Apl. Mat. 31 (1986), 365-378. DOI 10.21136/AM.1986.104214 | MR 0863032 | Zbl 0615.65103
[3] Blaheta, R.: Convergence of Newton-type methods in incremental return mapping analysis of elasto-plastic problems. Comput. Methods Appl. Mech. Eng. 147 (1997), 167-185. DOI 10.1016/S0045-7825(97)00012-1 | MR 1470544 | Zbl 0887.73017
[4] Blaheta, R., Béreš, M., Domesová, S., Horák, D.: Bayesian inversion for steady flow in fractured porous media with contact on fractures and hydro-mechanical coupling. Comput. Geosci. 24 (2020), 1911-1932. DOI 10.1007/s10596-020-09935-8 | MR 4163338 | Zbl 1452.76230
[5] Blaheta, R., Dostal, Z.: On the solution of large 3D geomechanical problems. Numerical Methods in Geomechanics, Innsbruck 1988 A. A. Balkema, Rotterdam (1988), 1911-1916.
[6] Blaheta, R., Haslinger, J., Sysala, S., Arbenz, P., (Eds.), J. Kraus: MATCOM special issue Modelling 2019: International Conference on Mathematical Modelling and Computational Methods in Applied Sciences and Engineering. Math. Comput. Simul. 189 (2021), 1-2. DOI 10.1016/j.matcom.2021.03.040 | MR 4297851 | Zbl 1540.35005
[7] Blaheta, R., Margenov, S., Neytcheva, M.: Uniform estimate of the constant in the strengthened CBS inequality for anisotropic non-conforming FEM systems. Numer. Linear Algebra Appl. 11 (2004), 309-326. DOI 10.1002/nla.350 | MR 2057704 | Zbl 1164.65392
[8] Haslinger, J., Blaheta, R., Mäkinen, R. A. E.: Parameter identification for heterogeneous materials by optimal control approach with flux cost functionals. Math. Comput. Simul. 189 (2021), 55-68. DOI 10.1016/j.matcom.2020.06.009 | MR 4297856 | Zbl 1540.93105
[9] Korneev, V. G., Langer, U.: Approximate Solution of Plastic Flow Theory Problems. Teubner-Texte zur Mathematik 69. Teubner, Leipzig (1984). MR 0572398 | Zbl 0555.73039
[10] Luber, T.: Efficient Iterative Methods and Solvers for FEM Analysis. Ph.D. Thesis. VŠB--Technical University of Ostrava, Ostrava (2022), Available at https://dspace.vsb.cz/handle/10084/148531\kern0pt
[11] Sysala, S.: Laudation for the 70th birthday of Professor Radim Blaheta. Math. Comput. Simul. 189 (2021), 3-4. DOI 10.1016/j.matcom.2021.04.026 | MR 4297852 | Zbl 1540.01037
[12] Sysala, S., Tichý, P.: Editorial -- Special issue on the occasion of the Seminar on Numerical Analysis 25.-29.1.2021. Appl. Math., Praha 67 (2022), 675-678. DOI 10.21136/AM.2022.0178-22 | MR 4505699 | Zbl 1538.65002
Partner of
EuDML logo