Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Stokes problem; threshold leak boundary condition; variational inequality; nonsmooth and global optimization; finite element method
Summary:
This paper addresses the identification of the leak bound function $g$ in the Stokes system with threshold leak boundary conditions, where $g$ varies spatially. The state problem is solved using the dual formulation of the algebraic system, and the resulting optimization problem is formulated as a nonsmooth optimization problem. We establish the existence of solutions for both the continuous and discrete formulations of the problem. The theoretical developments are complemented by numerical experiments, which compare the performance of the nonsmooth optimization approach with traditional regularization-based methods and global optimization techniques.
References:
[1] Arnold, D. N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21 (1984), 337-344. DOI 10.1007/BF02576171 | MR 0799997 | Zbl 0593.76039
[2] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). DOI 10.1016/s0168-2024(08)x7014-6 | MR 0520174 | Zbl 0383.65058
[3] Coleman, T. F., Li, Y.: A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. Optim. 6 (1996), 1040-1058. DOI 10.1137/S1052623494240456 | MR 1416528 | Zbl 0861.65053
[4] Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels. Dunod, Gauthier-Villars, Paris (1974), French. MR 0463993 | Zbl 0281.49001
[5] Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. Academic Press, Boston (1990). DOI 10.1016/C2009-0-22351-8 | MR 1058011 | Zbl 0702.68004
[6] Fujita, H.: A mathematical analysis of motions of viscous incompressible fluid under leak and or slip boundary conditions. RIMS Kokyuroku 888 (1994), 199-216. MR 1338892 | Zbl 0939.76509
[7] Fujita, H.: A coherent analysis of Stokes flows under boundary conditions of friction type. J. Comput. Appl. Math. 149 (2002), 57-69. DOI 10.1016/S0377-0427(02)00520-4 | MR 1952966 | Zbl 1058.76023
[8] Gfrerer, H., Mandlmayr, M., Outrata, J. V., Valdman, J.: On the SCD semismooth* Newton method for generalized equations with applications to a class of static contact problems with Coulomb friction. Comput. Optim. Appl. 86 (2023), 1159-1191. DOI 10.1007/s10589-022-00429-0 | Zbl 1536.90243
[9] Haslinger, J., Kučera, R., Motyčková, K., Šátek, V.: Numerical modeling of the leak through semipermeable walls for 2D/3D Stokes flow: Experimental scalability of dual algorithms. Mathematics 9 (2021), Article ID 2906, 24 pages. DOI 10.3390/math9222906
[10] Haslinger, J., Kučera, R., Sassi, T., Šátek, V.: Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D. Math. Comput. Simul. 189 (2021), 191-206. DOI 10.1016/j.matcom.2020.12.015 | MR 4297864 | Zbl 1540.76089
[11] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. Advances in Design and Control 7. SIAM, Philadelphia (2003). DOI 10.1137/1.9780898718690 | MR 1969772 | Zbl 1020.74001
[12] Haslinger, J., Mäkinen, R. A. E.: The parameter identification in the Stokes system with threshold slip boundary conditions. ZAMM, Z. Angew. Math. Mech. 100 (2020), Article ID e201900209, 19 pages. DOI 10.1002/zamm.201900209 | MR 4135765 | Zbl 07806603
[13] Haslinger, J., Mäkinen, R. A. E.: Optimal control problems in nonsmooth solid and fluid mechanics: Computational aspects. Impact of Scientific Computing on Science and Society Springer, Cham (2023), 181-193. DOI 10.1007/978-3-031-29082-4_10
[14] Haslinger, J., Mäkinen, R. A. E.: Shape optimization for the Stokes system with threshold leak boundary conditions. Math. Comput. Simul. 221 (2024), 180-196. DOI 10.1016/j.matcom.2024.03.002 | MR 4715249 | Zbl 07875908
[15] Haslinger, J., Stebel, J.: Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains. ZAMM, Z. Angew. Math. Mech. 96 (2016), 1049-1060. DOI 10.1002/zamm.201500117 | MR 3550594 | Zbl 1538.49055
[16] Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002), 865-888. DOI 10.1137/S1052623401383558 | MR 1972219 | Zbl 1080.90074
[17] Howell, J. S., Walkington, N. J.: Inf-sup conditions for twofold saddle point problems. Numer. Math. 118 (2011), 663-693. DOI 10.1007/s00211-011-0372-5 | MR 2822495 | Zbl 1230.65128
[18] Kiwiel, K. C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program., Ser. A 46 (1990), 105-122. DOI 10.1007/BF01585731 | MR 1045575 | Zbl 0697.90060
[19] Lemaréchal, C.: Nondifferentiable optimization. Optimization Handbooks in Operations Research and Management Science 1. Elsevier, Amsterdam (1989), 529-572. DOI 10.1016/S0927-0507(89)01008-X | MR 1105106
[20] Mäkelä, M. M., Karmitsa, N., Wilppu, O.: Proximal bundle method for nonsmooth and nonconvex multiobjective optimization. Mathematical Modeling and Optimization of Complex Structures Computational Methods in Applied Sciences 40. Springer, Cham (2016), 191-204. DOI 10.1007/978-3-319-23564-6_12 | MR 3411080
[21] Inc, MathWorks: MATLAB: Version 2023. Available at https://www.mathworks.com/
[22] Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results. Nonconvex Optimization and its Applications 28. Kluwer Academic Publishers, Dordrecht (1998). DOI 10.1007/978-1-4757-2825-5 | MR 1641213 | Zbl 0947.90093
[23] Qi, L., Sun, J.: A nonsmooth version of Newton's method. Math. Program., Ser. A 58 (1993), 353-367. DOI 10.1007/BF01581275 | MR 1216791 | Zbl 0780.90090
[24] Regis, R. G., Shoemaker, C. A.: A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19 (2007), 497-509. DOI 10.1287/ijoc.1060.0182 | MR 2364007 | Zbl 1241.90192
Partner of
EuDML logo