Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
retract; polynomial ring; exponential map
Summary:
Let $A$ be a retract of the polynomial ring in three variables over a field $k$. It is known that if ${\rm char} (k) = 0$ or ${\rm tr.deg}_k A \not = 2$, then $A$ is a polynomial ring. We give some sufficient conditions for $A$ to be the polynomial ring in two variables over $k$ when ${\rm char} (k) > 0$ and ${\rm tr.deg}_k A = 2$.
References:
[1] Abhyankar, S. S., Heinzer, W., Eakin, P.: On the uniqueness of the coefficient ring in a polynomial ring. J. Algebra 23 (1972), 310-342. DOI 10.1016/0021-8693(72)90134-2 | MR 0306173 | Zbl 0255.13008
[2] Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings. Cambridge Studies in Advanced Mathematics 144. Cambridge University Press, Cambridge (2015). DOI 10.1017/CBO9781139175852 | MR 3307753 | Zbl 1360.14001
[3] Bhatwadekar, S. M., Gupta, N.: A note on the cancellation property of $k[X,Y]$. J. Algebra Appl. 14 (2015), Article ID 1540007, 5 pages. DOI 10.1142/S0219498815400071 | MR 3368259 | Zbl 1326.14142
[4] Chakraborty, S., Dasgupta, N., Dutta, A. K., Gupta, N.: Some results on retracts of polynomial rings. J. Algebra 567 (2021), 243-268. DOI 10.1016/j.jalgebra.2020.08.030 | MR 4158731 | Zbl 1468.13060
[5] Chakraborty, S., Gurjar, R. V., Miyanishi, M.: Factorially closed subrings of commutative rings. Algebra Number Theory 9 (2015), 1137-1158. DOI 10.2140/ant.2015.9.1137 | MR 3366001 | Zbl 1318.13002
[6] Costa, D. L.: Retracts of polynomial rings. J. Algebra 44 (1977), 492-502. DOI 10.1016/0021-8693(77)90197-1 | MR 0429866 | Zbl 0352.13008
[7] Evyatar, A., Zaks, A.: Rings of polynomials. Proc. Am. Math. Soc. 25 (1970), 559-562. DOI 10.1090/S0002-9939-1970-0258820-3 | MR 0258820 | Zbl 0198.06202
[8] Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Springer, Berlin (2017). DOI 10.1007/978-3-662-55350-3 | MR 3700208 | Zbl 1391.13001
[9] Gupta, N.: On the cancellation problem for the affine space $\Bbb A^3$ in characteristic $p$. Invent. Math. 195 (2014), 279-288. DOI 10.1007/s00222-013-0455-2 | MR 3148104 | Zbl 1309.14050
[10] Gupta, N.: On Zariski's cancellation problem in characteristic. Adv. Math. 264 (2014), 296-307. DOI 10.1016/j.aim.2014.07.012 | MR 3250286 | Zbl 1325.14078
[11] Gupta, N., Nagamine, T.: Retracts of Laurent polynomial rings. Available at https://arxiv.org/abs/2301.12681 (2023), 5 pages. DOI 10.48550/arXiv.2301.12681
[12] Kambayashi, T.: On the absence of nontrivial separable forms of the affine plane. J. Algebra 35 (1975), 449-456. DOI 10.1016/0021-8693(75)90058-7 | MR 0369380 | Zbl 0309.14029
[13] Kambayashi, T.: On Fujita's cancellation theorem for the affine plane. J. Fac. Sci., Univ. Tokyo, Sect IA, Math. 27 (1980), 535-548. MR 0603951 | Zbl 0453.14015
[14] Kojima, H.: Notes on the kernels of locally finite higher derivations in polynomial rings. Commun. Algebra 44 (2016), 1924-1930. DOI 10.1080/00927872.2015.1027387 | MR 3490655 | Zbl 1344.13008
[15] Kojima, H.: Smooth affine $\Bbb{G}_m$-surfaces with finite Picard groups and trivial units. Tokyo J. Math. 46 (2023), 93-109. DOI 10.3836/tjm/1502179385 | MR 4609895 | Zbl 1522.14079
[16] Kuroda, S.: A generalization of Nakai's theorem on locally finite iterative higher derivations. Osaka J. Math. 54 (2017), 335-341. MR 3657233 | Zbl 1368.13027
[17] Liu, D., Sun, X.: A class of retracts of polynomial algebras. J. Pure Appl. Algebra 222 (2018), 382-386. DOI 10.1016/j.jpaa.2017.04.009 | MR 3694460 | Zbl 1387.14147
[18] Liu, D., Sun, X.: Retracts that are kernels of locally nilpotent derivations. Czech. Math. J. 72 (2022), 191-199. DOI 10.21136/CMJ.2021.0388-20 | MR 4389114 | Zbl 07511561
[19] Miyanishi, M.: Normal affine subalgebras of a polynomial ring. Algebraic and Topological Theories Kinokuniya Company, Tokyo (1986), 37-51. MR 1102251 | Zbl 0800.14018
[20] Nagamine, T.: A note on retracts of polynomial rings in three variables. J. Algebra 534 (2019), 339-343. DOI 10.1016/j.jalgebra.2019.05.040 | MR 3979078 | Zbl 1423.13063
[21] Russell, P., Sathaye, A.: On finding and cancelling variables in $k[X,Y,Z]$. J. Algebra 57 (1979), 151-166. DOI 10.1016/0021-8693(79)90214-X | MR 0533106 | Zbl 0411.13011
[22] Shpilrain, V., Yu, J.-T.: Polynomial retracts and the Jacobian conjecture. Trans. Am. Math. Soc. 352 (2000), 477-484. DOI 10.1090/S0002-9947-99-02251-5 | MR 1487631 | Zbl 0944.13011
[23] Zariski, O.: Interprétations algébrico-géométriques du quatorzième problème de Hilbert. Bull. Sci. Math., II. Sér. 78 (1954), 155-168 French. MR 0065217 | Zbl 0056.39602
Partner of
EuDML logo