Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Hardy-Sobolev integrability; generalized Riesz potential; weighted Morrey-Orlicz space; double phase functional
Summary:
We are concerned with weighted Hardy-Sobolev type integrabilities for generalized Riesz potentials $$ R_{\alpha ,m}f(x) = \int _{{\mathbb R}^n} R_{\alpha ,m} (x,y) f(y) {\rm d} y $$ of functions $f$ in weighted Morrey-Orlicz spaces, where $R_{\alpha }(x) = |x|^{\alpha -n}$ and $$ R_{\alpha ,m}(x,y) = R_{\alpha }(x-y) - \sum _{|\ell | \le m-1} \frac {y^{\ell }}{\ell !} (D^{\ell }R_{\alpha })(-x). $$ Those potentials are used to give a representation of $C^1$-functions on the punctured space ${\mathbb R} ^n\setminus \{0\}$. As an application, we obtain Hardy-Sobolev type integrabilities for general double phase functionals given by $$ \varphi (x,t) =\varphi _1(t) + \varphi _2(b(x)t). $$
References:
[1] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. DOI 10.1007/s00526-018-1332-z | MR 3775180 | Zbl 1394.49034
[2] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218 (2015), 219-273. DOI 10.1007/s00205-015-0859-9 | MR 3360738 | Zbl 1325.49042
[3] Filippis, C. De, Mingione, G.: Regularity for double phase problems at nearly linear growth. Arch. Ration. Mech. Anal. 247 (2023), Article ID 85, 50 pages. DOI 10.1007/s00205-023-01907-3 | MR 4630451 | Zbl 1525.35089
[4] Hästö, P., Ok, J.: Regularity theory for non-autonomous problems with a priori assumptions. Calc. Var. Partial Differ. Equ. 62 (2023), Article ID 251, 28 pages. DOI 10.1007/s00526-023-02587-3 | MR 4658589 | Zbl 1529.35109
[5] Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality: About Its History and Some Related Results. Vydavatelský servis, Plzeň (2007). MR 2351524 | Zbl 1213.42001
[6] Kufner, A., Persson, L.-E., Samko, N.: Weighted Inequalities of Hardy Type. World Scientific, Hackensack (2017). DOI 10.1142/10052 | MR 3676556 | Zbl 1380.26001
[7] Maeda, F.-Y., Mizuta, Y., Ohno, T.: Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$. Ann. Acad. Sci. Fenn., Math. 35 (2010), 405-420. DOI 10.5186/aasfm.2010.3526 | MR 2731699 | Zbl 1216.46025
[8] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 76-96. DOI 10.1016/j.bulsci.2012.03.008 | MR 3007101 | Zbl 1267.46045
[9] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents. Forum Math. 31 (2019), 517-527. DOI 10.1515/forum-2018-0077 | MR 3918454 | Zbl 1423.46049
[10] Maeda, F.-Y., Mizuta, Y., Shimomura, T.: Variable exponent weighted norm inequality for generalized Riesz potentials on the unit ball. Collect. Math. 69 (2018), 377-394. DOI 10.1007/s13348-017-0210-x | MR 3842212 | Zbl 1405.46023
[11] Mizuta, Y.: On the behaviour at infinity of superharmonic functions. J. Lond. Math. Soc., II. Ser. 27 (1983), 97-105. DOI 10.1112/jlms/s2-27.1.97 | MR 0686508 | Zbl 0516.31002
[12] Mizuta, Y.: Potential Theory in Euclidean Spaces. GAKUTO International Series. Mathematical Sciences and Applications. Gakkōtosho, Tokyo (1996). MR 1428685 | Zbl 0849.31001
[13] Mizuta, Y.: Integral representations, differentiability properties and limits at infinity for Beppo Levi functions. Potential Anal. 6 (1997), 237-267. DOI 10.1023/A:1017996900877 | MR 1452545 | Zbl 0885.31004
[14] Mizuta, Y., Ohno, T., Shimomura, T., Yamauchi, Y.: Growth properties for generalized Riesz potentials of functions satisfying Orlicz conditions. Math. Nachr. 293 (2020), 1156-1173. DOI 10.1002/mana.201800569 | MR 4107988 | Zbl 1477.31026
[15] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities in the half-space for double phase functionals. Rocky Mt. J. Math. 51 (2021), 2159-2169. DOI 10.1216/rmj.2021.51.2159 | MR 4397671 | Zbl 1497.46036
[16] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities in the unit ball for double phase functionals. J. Math. Anal. Appl. 501 (2021), Article ID 124133, 17 pages. DOI 10.1016/j.jmaa.2020.124133 | MR 4258797 | Zbl 1478.46037
[17] Mizuta, Y., Shimomura, T.: Sobolev and Trudinger inequalities in weighted Morrey spaces for double phase functionals. Z. Anal. Anwend. 41 (2022), 439-466. DOI 10.4171/ZAA/1708 | MR 4571617 | Zbl 1516.31016
[18] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities for double phase functionals. Hokkaido Math. J. 52 (2023), 331-352. DOI 10.14492/hokmj/2021-544 | MR 4612171 | Zbl 1529.46021
[19] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities for Riesz potentials of functions in Orlicz spaces. Acta Math. Hung. 171 (2023), 221-240. DOI 10.1007/s10474-023-01389-5 | MR 4682766 | Zbl 7794380
[20] Mizuta, Y., Shimomura, T.: Integrability for Hardy operators of double phase. Z. Anal. Anwend. 42 (2023), 375-402. DOI 10.4171/ZAA/1732 | MR 4699886 | Zbl 1548.46024
[21] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities and boundary growth of Sobolev functions for double phase functionals on the half space. Ric. Mat. 73 (2024), 1707-1723. DOI 10.1007/s11587-022-00686-5 | MR 4780063 | Zbl 1556.46025
[22] Mizuta, Y., Shimomura, T.: Hardy-Sobolev type integrability for generalized Riesz potentials in weighted Morrey-Orlicz spaces. Tokyo J. Math 48 (2025), 141-166. DOI 10.3836/tjm/1502179419 | MR 4949385 | Zbl 08087152
[23] Opic, B., Kufner, A.: Hardy-Type Inequalities. Pitman Research Notes in Mathematics 219. Longman Scientific & Technical, Harlow (1990). MR 1069756 | Zbl 0698.26007
[24] Ragusa, M. A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9 (2020), 710-728. DOI 10.1515/anona-2020-0022 | MR 3985000 | Zbl 1420.35145
[25] Shimomura, T., Mizuta, Y.: Taylor expansion of Riesz potentials. Hiroshima Math. J. 25 (1995), 595-621. DOI 10.32917/hmj/1206127635 | MR 1364077 | Zbl 0863.31005
Partner of
EuDML logo