Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$(\theta ,\varphi )$-derivation; Jordan $(\theta ,\varphi )$-derivation; Jordan triple $(\theta ,\varphi )$-derivation
Summary:
Let $R$ be a 2-torsion free prime ring and let $\theta ,\varphi $ be endomorphisms of $R$. We prove that if $R$ is commutative, then every Jordan triple $(\theta ,\varphi )$-derivation of $R$ is a \hbox {$(\theta ,\varphi )$-derivation} and if $R$ is noncommutative, then every Jordan triple $(\theta ,\varphi )$-derivation of $R$ with either $\theta $ or $\varphi $ an epimorphism, is a $(\theta ,\varphi )$-derivation. As an application, we characterize Jordan triple semiderivations of prime rings. Our theorems naturally generalize the result for Jordan $(\theta ,\varphi )$-derivations obtained by M. Brešar, J. Vukman (1991) and the result for Jordan semiderivations obtained by V. De Filippis, A. Mamouni, L. Oukhtite (2015).
References:
[1] Ali, S., Fošner, A., Fošner, M., Khan, M. S.: On generalized Jordan triple $(\alpha,\beta)^*$-derivations and related mappings. Mediterr. J. Math. 10 (2013), 1657-1668. DOI 10.1007/s00009-013-0277-x | MR 3119325 | Zbl 1285.16035
[2] Ashraf, M., Ali, A., Ali, S.: On Lie ideals and generalized $(\theta,\phi)$-derivations on prime rings. Commun. Algebra 32 (2004), 2977-2985. DOI 10.1081/AGB-120039276 | MR 2102162 | Zbl 1068.16046
[3] Ashraf, M., Siddeeque, M. A., Shikeh, A. H.: On the characterization of certain additive maps in prime $*$-rings. Czech. Math. J. 74 (2024), 549-565. DOI 10.21136/CMJ.2024.0460-23 | MR 4764539 | Zbl 07893398
[4] Bell, H. E., III, W. S. Martindale: Semiderivations and commutativity in prime rings. Can. Math. Bull. 31 (1988), 500-508. DOI 10.4153/CMB-1988-072-9 | MR 0971579 | Zbl 0627.16027
[5] Bergen, J.: Derivations in prime rings. Can. Math. Bull. 26 (1983), 267-270. DOI 10.4153/CMB-1983-042-2 | MR 0703394 | Zbl 0525.16021
[6] Brešar, M.: Jordan derivations on semiprime rings. Proc. Am. Math. Soc. 104 (1988), 1003-1006. DOI 10.1090/S0002-9939-1988-0929422-1 | MR 0929422 | Zbl 0691.16039
[7] Brešar, M.: Jordan mappings of semiprime rings. J. Algebra 127 (1989), 218-228. DOI 10.1016/0021-8693(89)90285-8 | MR 1029414 | Zbl 0691.16040
[8] Brešar, M.: Semiderivations of prime rings. Proc. Am. Math. Soc. 108 (1990), 859-860. DOI 10.1090/S0002-9939-1990-1007488-X | MR 1007488 | Zbl 0688.16038
[9] Brešar, M., Vukman, J.: Jordan derivations on prime rings. Bull. Aust. Math. Soc. 37 (1988), 321-322. DOI 10.1017/S0004972700026927 | MR 0943433 | Zbl 0634.16021
[10] Brešar, M., Vukman, J.: Jordan $(\theta,\varphi)$-derivations. Glas. Math., III. Ser. 26 (1991), 13-17. MR 1269170 | Zbl 0798.16023
[11] Chang, C.-W., Liu, C.-K.: Derivations characterized by monomials $x^{2n}$ in prime rings. J. Algebra Appl. 23 (2024), Article ID 2450237, 31 pages. DOI 10.1142/S0219498824502372 | MR 4833980 | Zbl 07960555
[12] Filippis, V. De, Mamouni, A., Oukhtite, L.: Generalized Jordan semiderivations in prime rings. Can. Math. Bull. 58 (2015), 263-270. DOI 10.4153/CMB-2014-066-9 | MR 3334920 | Zbl 1326.16037
[13] B. L. M. Ferreira, R. N. Ferreira, H. Guzzo, Jr.: Generalized Jordan derivations on semiprime rings. J. Aust. Math. Soc. 109 (2020), 36-43. DOI 10.1017/S1446788719000259 | MR 4120795 | Zbl 1448.16044
[14] Fošner, A., Vukman, J.: On certain functional equations related to Jordan triple $(\theta,\phi)$-derivations on semiprime rings. Monatsh. Math. 162 (2011), 157-165. DOI 10.1007/s00605-009-0154-7 | MR 2769884 | Zbl 1216.16034
[15] Gölbaşı, Ö., Koç, E.: Notes on Jordan $(\sigma,\tau)^*$-derivations and Jordan triple $(\sigma,\tau)^*$-derivations. Aequationes Math. 85 (2013), 581-591. DOI 10.1007/s00010-012-0149-7 | MR 3063891 | Zbl 1271.16044
[16] Herstein, I. N.: Jordan derivations of prime rings. Proc. Am. Math. Soc. 8 (1957), 1104-1110. DOI 10.1090/S0002-9939-1957-0095864-2 | MR 0095864 | Zbl 0216.07202
[17] Jing, W., Lu, S.: Generalized Jordan derivations on prime rings and standard operator algebras. Taiwanese J. Math. 7 (2003), 605-613. DOI 10.11650/twjm/1500407580 | MR 2017914 | Zbl 1058.16031
[18] Lee, T.-K.: Functional identities and Jordan $\sigma$-derivations. Linear Multilinear Algebra 64 (2016), 221-234. DOI 10.1080/03081087.2015.1032200 | MR 3434517 | Zbl 1346.16016
[19] Lee, T.-K.: Jordan $\sigma$-derivations of prime rings. Rocky Mt. J. Math. 47 (2017), 511-525. DOI 10.1216/RMJ-2017-47-2-511 | MR 3635372 | Zbl 1371.16020
[20] Leroy, A., Matczuk, J.: Quelques remarques à propos des $S$-dérivations. Commun. Algebra 13 (1985), 1229-1244 French. DOI 10.1080/00927878508823216 | MR 0788760 | Zbl 0569.16028
[21] Liu, C.-K.: Generalized derivations with nilpotent values in semiprime rings. Quaest. Math. 47 (2024), 1195-1212. DOI 10.2989/16073606.2023.2283137 | MR 4760436 | Zbl 07880826
[22] Liu, C.-K., Shiue, W.-K.: Generalized Jordan triple $(\theta,\phi)$-derivations on semiprime rings. Taiwanese J. Math. 11 (2007), 1397-1406. DOI 10.11650/twjm/1500404872 | MR 2368657 | Zbl 1143.16036
[23] Siddeeque, M. A., Khan, N., Abdullah, A. A.: Weak Jordan $*$-derivations of prime rings. J. Algebra Appl. 22 (2023), Article ID 2350105, 34 pages. DOI 10.1142/S0219498823501050 | MR 4556321 | Zbl 1541.16036
[24] Vukman, J.: A note on generalized derivations of semiprime rings. Taiwanese J. Math. 11 (2007), 367-370. DOI 10.11650/twjm/1500404694 | MR 2333351 | Zbl 1124.16030
Partner of
EuDML logo