Keywords: $(\theta ,\varphi )$-derivation; Jordan $(\theta ,\varphi )$-derivation; Jordan triple $(\theta ,\varphi )$-derivation
Summary: Let $R$ be a 2-torsion free prime ring and let $\theta ,\varphi $ be endomorphisms of $R$. We prove that if $R$ is commutative, then every Jordan triple $(\theta ,\varphi )$-derivation of $R$ is a \hbox {$(\theta ,\varphi )$-derivation} and if $R$ is noncommutative, then every Jordan triple $(\theta ,\varphi )$-derivation of $R$ with either $\theta $ or $\varphi $ an epimorphism, is a $(\theta ,\varphi )$-derivation. As an application, we characterize Jordan triple semiderivations of prime rings. Our theorems naturally generalize the result for Jordan $(\theta ,\varphi )$-derivations obtained by M. Brešar, J. Vukman (1991) and the result for Jordan semiderivations obtained by V. De Filippis, A. Mamouni, L. Oukhtite (2015).
References:
[1] Ali, S., Fošner, A., Fošner, M., Khan, M. S.: On generalized Jordan triple $(\alpha,\beta)^*$-derivations and related mappings. Mediterr. J. Math. 10 (2013), 1657-1668. DOI 10.1007/s00009-013-0277-x | MR 3119325 | Zbl 1285.16035
[2] Ashraf, M., Ali, A., Ali, S.: On Lie ideals and generalized $(\theta,\phi)$-derivations on prime rings. Commun. Algebra 32 (2004), 2977-2985. DOI 10.1081/AGB-120039276 | MR 2102162 | Zbl 1068.16046
[3] Ashraf, M., Siddeeque, M. A., Shikeh, A. H.: On the characterization of certain additive maps in prime $*$-rings. Czech. Math. J. 74 (2024), 549-565. DOI 10.21136/CMJ.2024.0460-23 | MR 4764539 | Zbl 07893398
[14] Fošner, A., Vukman, J.: On certain functional equations related to Jordan triple $(\theta,\phi)$-derivations on semiprime rings. Monatsh. Math. 162 (2011), 157-165. DOI 10.1007/s00605-009-0154-7 | MR 2769884 | Zbl 1216.16034
[15] Gölbaşı, Ã., Koç, E.: Notes on Jordan $(\sigma,\tau)^*$-derivations and Jordan triple $(\sigma,\tau)^*$-derivations. Aequationes Math. 85 (2013), 581-591. DOI 10.1007/s00010-012-0149-7 | MR 3063891 | Zbl 1271.16044