Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$S$-Noetherian ring; $S$-primary ideal; $S$-irreducible ideal; $S$-primary decomposition
Summary:
Let $R$ be a commutative ring with identity, and let $S \subseteq R$ be a multiplicative set. An ideal $Q$ of $R$ (disjoint from $S$) is said to be $S$-primary if there exists an $s\in S$ such that for all $x,y\in R$ with $xy\in Q$, we have $sx\in Q$ or $sy\in {\rm rad}(Q)$. Also, we say that an ideal of $R$ is $S$-primary decomposable or has an $S$-primary decomposition if it can be written as a finite intersection of $S$-primary ideals. First we provide an example of an $S$-Noetherian ring in which an ideal does not have a primary decomposition. Then our main aim is to establish the existence and uniqueness of $S$-primary decomposition in $S$-Noetherian rings as an extension of a historical theorem of Lasker-Noether.
References:
[1] Anderson, D. D., Dumitrescu, T.: $S$-Noetherian rings. Commun. Algebra 30 (2002), 4407-4416. DOI 10.1081/AGB-120013328 | MR 1936480 | Zbl 1060.13007
[2] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969). MR 0242802 | Zbl 0175.03601
[3] Baeck, J., Lee, G., Lim, J. W.: $S$-Noetherian rings and their extensions. Taiwanese J. Math. 20 (2016), 1231-1250. DOI 10.11650/tjm.20.2016.7436 | MR 3580293 | Zbl 1357.16039
[4] Bilgin, Z., Reyes, M. L., Tekir, Ü.: On right $S$-Noetherian rings and $S$-Noetherian modules. Commun. Algebra 46 (2018), 863-869. DOI 10.1080/00927872.2017.1332199 | MR 3764903 | Zbl 1410.16026
[5] Gilmer, R., Heinzer, W.: The Laskerian property, power series rings and Noetherian spectra. Proc. Am. Math. Soc. 79 (1980), 13-16. DOI 10.1090/S0002-9939-1980-0560575-6 | MR 0560575 | Zbl 0447.13009
[6] Hamed, A.: $S$-Noetherian spectrum condition. Commun. Algebra 46 (2018), 3314-3321. DOI 10.1080/00927872.2017.1412455 | MR 3788995 | Zbl 1395.13016
[7] Hamed, A., Hizem, S.: $S$-Noetherian rings of the forms $\Bbb A [X]$ and $\Bbb A [[X]]$. Commun. Algebra 43 (2015), 3848-3856. DOI 10.1080/00927872.2014.924127 | MR 3360852 | Zbl 1329.13014
[8] Hamed, A., Hizem, S.: Modules satisfying the $S$-Noetherian property and $S$-ACCR. Commun. Algebra 44 (2016), 1941-1951. DOI 10.1080/00927872.2015.1027377 | MR 3490657 | Zbl 1347.13005
[9] Hamed, A., Malek, A.: $S$-prime ideals of a commutative ring. Beitr. Algebra Geom. 61 (2020), 533-542. DOI 10.1007/s13366-019-00476-5 | MR 4127389 | Zbl 1442.13010
[10] Kaplansky, I.: Commutative Rings. University of Chicago Press, Chicago (1974). MR 0345945 | Zbl 0296.13001
[11] Lasker, E.: Zur Theorie der Moduln und Ideale. Math. Ann. 60 (1905), 20-116 German \99999JFM99999 36.0292.01. DOI 10.1007/BF01447495 | MR 1511288
[12] Lim, J. W.: A note on $S$-Noetherian domains. Kyungpook Math. J. 55 (2015), 507-514. DOI 10.5666/KMJ.2015.55.3.507 | MR 3414628 | Zbl 1329.13006
[13] Massaoud, E.: $S$-primary ideals of a commutative ring. Commun. Algebra 50 (2022), 988-997. DOI 10.1080/00927872.2021.1977939 | MR 4379651 | Zbl 1481.13007
[14] Noether, E.: Idealtheorie in Ringbereichen. Math. Ann. 83 (1921), 24-66 German \99999JFM99999 48.0121.03. DOI 10.1007/BF01464225 | MR 1511996
[15] Singh, T., Ansari, A. U., Kumar, S. D.: $S$-Noetherian rings, modules and their generalizations. Surv. Math. Appl. 18 (2023), 163-182. MR 4657507 | Zbl 1537.13035
[16] Vella, D. C.: Primary decomposition in Boolean rings. Pi Mu Epsilon J. 14 (2018), 581-588. MR 3887503 | Zbl 1432.13004
Partner of
EuDML logo