Keywords: modular invariant; separating set; dihedral group
Summary: Let $\mathbb {F}$ be an algebraically closed field of odd prime characteristic $p$. Using only transfers and norms, we describe a separating set for each indecomposable modular representation of the dihedral groups $D_{2p}$ over the field $\mathbb {F}$. Our construction is recursive and the size of every separating set depends only on the dimension of the representation.
References:
[1] Campbell, H. E. A., Wehlau, D. L.: Modular Invariant Theory. Encyclopaedia of Mathematical Sciences 139. Invariant Theory and Algebraic Transformation Groups 8. Springer, Berlin (2011). DOI 10.1007/978-3-642-17404-9 | MR 2759466 | Zbl 1216.14001
[12] Jia, P., Nan, J., Ma, Y.: Separating invariants for certain representations of the elementary Abelian $p$-groups of rank two. AIMS Math. 9 (2024), 25603-25618. DOI 10.3934/math.20241250 | MR 4795461