Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
modular invariant; separating set; dihedral group
Summary:
Let $\mathbb {F}$ be an algebraically closed field of odd prime characteristic $p$. Using only transfers and norms, we describe a separating set for each indecomposable modular representation of the dihedral groups $D_{2p}$ over the field $\mathbb {F}$. Our construction is recursive and the size of every separating set depends only on the dimension of the representation.
References:
[1] Campbell, H. E. A., Wehlau, D. L.: Modular Invariant Theory. Encyclopaedia of Mathematical Sciences 139. Invariant Theory and Algebraic Transformation Groups 8. Springer, Berlin (2011). DOI 10.1007/978-3-642-17404-9 | MR 2759466 | Zbl 1216.14001
[2] Chen, H., Nan, J., Wang, Y.: Coinvariants and invariants of the dihedral group $D_{2p}$ in characteristic $p>2$. Linear Multilinear Algebra 66 (2018), 224-242. DOI 10.1080/03081087.2017.1295431 | MR 3750585 | Zbl 1390.13019
[3] Chen, Y., Shank, R. J., Wehlau, D. L.: Modular invariants of finite gluing groups. J. Algebra 566 (2021), 405-434. DOI 10.1016/j.jalgebra.2020.08.034 | MR 4153231 | Zbl 1459.13008
[4] Chen, Y., Zhang, X.: A class of quadratic matrix equations over finite fields. Algebra Colloq. 30 (2023), 169-180. DOI 10.1142/s1005386723000147 | MR 4562922 | Zbl 1515.15014
[5] Derksen, H., Kemper, G.: Computational Invariant Theory. Encyclopaedia of Mathematical Sciences 130. Invariant Theory and Algebraic Transformation Groups 1. Springer, Berlin (2002). DOI 10.1007/978-3-662-04958-7 | MR 1918599 | Zbl 1011.13003
[6] Draisma, J., Kemper, G., Wehlau, D.: Polarization of separating invariants. Can. J. Math. 60 (2008), 556-571. DOI 10.4153/cjm-2008-027-2 | MR 2414957 | Zbl 1143.13008
[7] Dufresne, E.: Separating invariants and finite reflection groups. Adv. Math. 221 (2009), 1979-1989. DOI 10.1016/j.aim.2009.03.013 | MR 2522833 | Zbl 1173.13004
[8] Dufresne, E., Elmer, J., Kohls, M.: The Cohen-Macaulay property of separating invariants of finite groups. Transform. Groups 14 (2009), 771-785. DOI 10.1007/s00031-009-9072-y | MR 2577197 | Zbl 1184.13019
[9] Dufresne, E., Elmer, J., Sezer, M.: Separating invariants for arbitrary linear actions of the additive group. Manuscr. Math. 143 (2014), 207-219. DOI 10.1007/s00229-013-0625-y | MR 3147449 | Zbl 1294.13006
[10] Dufresne, E., Jeffries, J.: Separating invariants and local cohomology. Adv. Math. 270 (2015), 565-581. DOI 10.1016/j.aim.2014.11.003 | MR 3286543 | Zbl 1318.13009
[11] Elmer, J., Kohls, M.: Separating invariants for the basic $\Bbb{G}_a$-actions. Proc. Am. Math. Soc. 140 (2012), 135-146. DOI 10.1090/s0002-9939-2011-11273-5 | MR 2833525 | Zbl 1241.13009
[12] Jia, P., Nan, J., Ma, Y.: Separating invariants for certain representations of the elementary Abelian $p$-groups of rank two. AIMS Math. 9 (2024), 25603-25618. DOI 10.3934/math.20241250 | MR 4795461
[13] Kemper, G.: Separating invariants. J. Symb. Comput. 44 (2009), 1212-1222. DOI 10.1016/j.jsc.2008.02.012 | MR 2532166 | Zbl 1172.13001
[14] Kemper, G., Lopatin, A., Reimers, F.: Separating invariants over finite fields. J. Pure Appl. Algebra 226 (2022), Article ID 106904, 18 pages. DOI 10.1016/j.jpaa.2021.106904 | MR 4310052 | Zbl 1478.13009
[15] Kohls, M., Kraft, H.: Degree bounds for separating invariants. Math. Res. Lett. 17 (2010), 1171-1182. DOI 10.4310/mrl.2010.v17.n6.a15 | MR 2729640 | Zbl 1230.13010
[16] Kohls, M., Sezer, M.: Invariants of the dihedral group $D_{2p}$ in characteristic two. Math. Proc. Camb. Philos. Soc. 152 (2012), 1-7. DOI 10.1017/s030500411100065x | MR 2860414 | Zbl 1234.13008
[17] Kohls, M., Sezer, M.: Separating invariants for the Klein four group and cyclic groups. Int. J. Math. 24 (2013), Article ID 1350046, 11 pages. DOI 10.1142/s0129167x13500468 | MR 3078070 | Zbl 1311.13008
[18] Neusel, M. D., Sezer, M.: Separating invariants for modular $p$-groups and groups acting diagonally. Math. Res. Lett. 16 (2009), 1029-1036. DOI 10.4310/mrl.2009.v16.n6.a11 | MR 2576691 | Zbl 1194.13004
[19] Reimers, F.: Separating invariants of finite groups. J. Algebra 507 (2018), 19-46. DOI 10.1016/j.jalgebra.2018.03.022 | MR 3807041 | Zbl 1395.13002
[20] Reimers, F.: Separating invariants for two copies of the natural $S_n$-action. Commun. Algebra 48 (2020), 1584-1590. DOI 10.1080/00927872.2019.1691575 | MR 4079329 | Zbl 1458.13007
[21] Schefler, B.: The separating Noether number of abelian groups of rank two. J. Comb. Theory, Ser. A 209 (2025), Article ID 105951, 15 pages. DOI 10.1016/j.jcta.2024.105951 | MR 4792433 | Zbl 07943111
[22] Sezer, M.: Constructing modular separating invariants. J. Algebra 322 (2009), 4099-4104. DOI 10.1016/j.jalgebra.2009.07.011 | MR 2556140 | Zbl 1205.13009
[23] Sezer, M.: Explicit separating invariants for cyclic $p$-groups. J. Comb. Theory, Ser. A 118 (2011), 681-689. DOI 10.1016/j.jcta.2010.05.003 | MR 2739512 | Zbl 1267.13011
Partner of
EuDML logo