Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
character degree; character codegree
Summary:
Let $G$ be a finite group and $\chi $ be a character of $G$. We define the codegree of $\chi $ to be ${\rm codeg} (\chi ) = |G: {\rm ker}\chi |/ \chi (1)$. We study a few questions raised by Qian about character codegrees.
References:
[1] Chillag, D., Herzog, M.: On character degrees quotients. Arch. Math. 55 (1990), 25-29. DOI 10.1007/BF01199110 | MR 1059510 | Zbl 0671.20007
[2] S. M. Gagola, Jr.: A character theoretic condition for $F(G)>1$. Commun. Algebra 33 (2005), 1369-1382. DOI 10.1081/AGB-200058414 | MR 2149064 | Zbl 1098.20005
[3] Gow, R. I. S., Humphreys, J. F.: Normal $p$-complements and irreducible representations. J. Lond. Math. Soc., II. Ser. 11 (1975), 308-312. DOI 10.1112/jlms/s2-11.3.308 | MR 0379652 | Zbl 0329.20004
[4] Isaacs, I. M.: Character Theory of Finite Groups. Dover, New York (1994). MR 1280461 | Zbl 0849.20004
[5] Liu, Y., Yang, Y.: Two results on character codegrees. J. Algebra Appl. 24 (2025), Article ID 2550158, 7 pages. DOI 10.1142/S0219498825501580 | MR 4866085 | Zbl 1560.20028
[6] Navarro, G.: Characters and Blocks of Finite Groups. London Mathematical Society Lecture Note Series 250. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511526015 | MR 1632299 | Zbl 0903.20004
[7] Qian, G.: A character theoretic criterion for a $p$-closed group. Isr. J. Math. 190 (2012), 401-412. DOI 10.1007/s11856-011-0198-y | MR 2956248 | Zbl 1264.20011
[8] Qian, G.: Character codegrees in finite groups. Adv. Math., Beijing 52 (2023), 1-13 Chinese. DOI 10.11845/sxjz.2021012a | MR 4574708 | Zbl 08040762
[9] Qian, G., Wang, Y., Wei, H.: Co-degrees of irreducible characters in finite groups. J. Algebra 312 (2007), 946-955. DOI 10.1016/j.jalgebra.2006.11.001 | MR 2333193 | Zbl 1127.20009
[10] Yang, D., Gao, C., Lv, H.: Finite groups with special codegrees. Arch. Math. 115 (2020), 121-130. DOI 10.1007/s00013-020-01455-2 | MR 4118958 | Zbl 1528.20011
Partner of
EuDML logo