Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
composition operator; homogeneous Besov space; homogeneous Triebel-Lizorkin space; realization
Summary:
We prove the acting by composition of nontrivial functions $f \colon \mathbb {R} \to \mathbb {R}$ (i.e., ${T_f \colon g\to f\circ g}$) on homogeneous Besov and Triebel-Lizorkin spaces realized as subspaces of ${\mathcal S}'(\mathbb {R}^n)$ in case $s=n/p<1+1/p$, and $q>1$ (Besov space) and $p>1$ (Triebel-Lizorkin space). These subspaces are dilation invariant and endowed with quasi-seminorms such that $\|g\|=0$ if and only if $g$ is constant.
References:
[1] Bourdaud, G.: Realizations of homogeneous Besov and Lizorkin-Triebel spaces. Math. Nachr. 286 (2013), 476-491. DOI 10.1002/mana.201100151 | MR 3048126 | Zbl 1270.46027
[2] Bourdaud, G., Cristoforis, M. Lanza de, Sickel, W.: Superposition operators and functions of bounded $p$-variation. Rev. Mat. Iberoam. 22 (2006), 455-487. DOI 10.4171/rmi/463 | MR 2294787 | Zbl 1134.46015
[3] Bourdaud, G., Meyer, Y.: Le calcul fonctionnel sous-linéaire dans les espaces de Besov homogènes. Rev. Mat. Iberoam. 22 (2006), 725-746 French. DOI 10.4171/rmi/472 | MR 2294796 | Zbl 1142.46014
[4] Bourdaud, G., Moussai, M.: Dahlberg degeneracy for homogeneous Besov and Triebel- Lizorkin spaces. Math. Nachr. 297 (2024), 878-894. DOI 10.1002/mana.202300117 | MR 4720189 | Zbl 1548.46026
[5] Bourdaud, G., Moussai, M., Sickel, W.: Composition operators on Lizorkin-Triebel spaces. J. Funct. Anal. 259 (2010), 1098-1128. DOI 10.1016/j.jfa.2010.04.008 | MR 2652183 | Zbl 1219.47092
[6] Franke, J.: On the spaces $F^{s}_{pq}$ of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains. Math. Nachr. 125 (1986), 29-68. DOI 10.1002/mana.19861250104 | MR 0847350 | Zbl 0617.46036
[7] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics 80. Birkhäuser, Basel (1984). DOI 10.1007/978-1-4684-9486-0 | MR 0775682 | Zbl 0545.49018
[8] Jawerth, B.: Some observations on Besov and Lizorkin-Triebel spaces. Math. Scand. 40 (1977), 94-104. DOI 10.7146/math.scand.a-11678 | MR 0454618 | Zbl 0358.46023
[9] Moussai, M.: Composition operators on Besov algebras. Rev. Mat. Iberoam. 28 (2012), 239-272 \99999DOI99999 10.4171/rmi/676 . DOI 10.4171/rmi/676 | MR 2904140 | Zbl 1238.47040
[10] Moussai, M.: Realizations of homogeneous Besov and Triebel-Lizorkin spaces and an application to pointwise multipliers. Anal. Appl., Singap. 13 (2015), 149-183. DOI 10.1142/S0219530514500250 | MR 3319662 | Zbl 1348.46039
[11] Moussai, M.: Characterizations of realized homogeneous Besov and Triebel-Lizorkin spaces via differences. Appl. Math., Ser. B (Engl. Ed.) 33 (2018), 188-208. DOI 10.1007/s11766-018-3431-1 | MR 3813030 | Zbl 1399.46047
[12] Moussai, M.: Composition operators on Besov spaces in the limiting case $s=1+1/p$. Stud. Math. 241 (2018), 1-15. DOI 10.4064/sm8136-4-2017 | MR 3732927 | Zbl 1415.46024
[13] Runst, T.: Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type. Anal. Math. 12 (1986), 313-346. DOI 10.1007/BF01909369 | MR 0877164 | Zbl 0644.46022
[14] Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Series in Nonlinear Analysis and Applications 3. Walter de Gruyter, Berlin (1996). DOI 10.1515/9783110812411 | MR 1419319 | Zbl 0873.35001
[15] Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics 84. Birkhäuser, Basel (1992). DOI 10.1007/978-3-0346-0419-2 | MR 1163193 | Zbl 0763.46025
Partner of
EuDML logo