Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$\sqrt {J}U$ ring; $JU$ ring; $UU$ ring; Jacobson radical; nilpotent
Summary:
We intend to unviel a new class of rings, called $\sqrt {J}U$ rings, if the units of a ring $R$ equal the sum of 1 and an element from $\sqrt {J(R)}$. Recall that $\sqrt {J(R)}$ is a subset of $R$, not necessarily a subring, which equals $\{ z\in R \colon z^n \in R$ for some $n \geq 1 \}$. Both $UU$ and $JU$ rings are $\sqrt {J}U$ rings credited to the fact that nilpotents and $J(R)$ are subsets of $\sqrt {J(R)}$. The properties exhibited by $\sqrt {J}U$ rings are explored in a thorough manner following which its relations with other rings are observed. For instance, $UNJ$ rings are $\sqrt {J}U$ and no matrix ring, when $n > 1$ is $\sqrt {J}U$. We have focused on extensions of $\sqrt {J}U$ rings like $T(R,M)$, $H_{(p,q)}(R)$, $L_{(p,q)}(R)$, Morita context and group rings.
References:
[1] Bergman, G. M.: Modules over coproducts of rings. Trans. Am. Math. Soc. 200 (1974), 1-32. DOI 10.1090/S0002-9947-1974-0357502-5 | MR 0357502 | Zbl 0264.16017
[2] Călugăreanu, G.: UU rings. Carpathian J. Math. 31 (2015), 157-163. MR 3408811 | Zbl 1349.16059
[3] Chen, H., Gurgun, O., Halicioglu, S., Harmanci, A.: Rings in which nilpotents belong to Jacobson radical. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62 (2016), 595-606. MR 3680238 | Zbl 1389.16032
[4] Connell, I. G.: On the group ring. Can. Math. J. 15 (1963), 650-685. DOI 10.4153/CJM-1963-067-0 | MR 0153705 | Zbl 0121.03502
[5] Danchev, P. V.: Rings with Jacobson units. Toyama Math. J. 38 (2016), 61-74. MR 3675274 | Zbl 1368.16042
[6] Danchev, P. V., Lam, T.-Y.: Rings with unipotent units. Publ. Math. Debr. 88 (2016), 449-466. DOI 10.5486/PMD.2016.7405 | MR 3491753 | Zbl 1374.16089
[7] Haghany, A.: Hopficity and co-Hopficity for Morita contexts. Commun. Algebra 27 (1999), 477-492. DOI 10.1080/00927879908826443 | MR 1668301 | Zbl 0921.16002
[8] Koşan, M. T.: The p.p. property of trivial extensions. J. Algebra Appl. 14 (2015), Article ID 1550124, 5 pages. DOI 10.1142/S0219498815501248 | MR 3339810 | Zbl 1326.16023
[9] Koşan, M. T., Leroy, A., Matczuk, J.: On $UJ$-rings. Commun. Algebra 46 (2018), 2297-2303. DOI 10.1080/00927872.2017.1388814 | MR 3799210 | Zbl 1440.16022
[10] Koşan, M. T., Quynh, T. C., Žemlička, J.: UNJ-rings. J. Algebra Appl. 19 (2020), Article ID 2050170, 11 pages. DOI 10.1142/S0219498820501704 | MR 4136741 | Zbl 1461.16022
[11] Koşan, M. T., Žemlička, J.: Group rings that are UJ rings. Commun. Algebra 49 (2021), 2370-2377. DOI 10.1080/00927872.2020.1871000 | MR 4255013 | Zbl 1476.16024
[12] Kurtulmaz, Y., Halicioglu, S., Harmanci, A., Chen, H.: Rings in which elements are a sum of a central and a unit element. Bull. Belg. Math. Soc. - Simon Stevin 26 (2019), 619-631. DOI 10.36045/bbms/1576206360 | MR 4042404 | Zbl 1431.15019
[13] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. Springer, New York (1991). DOI 10.1007/978-1-4684-0406-7 | MR 1125071 | Zbl 0728.16001
[14] Ma, G., Wang, Y., Leroy, A.: Rings in which elements are sum of a central element and an element in the Jacobson radical. Czech. Math. J. 74 (2024), 515-533. DOI 10.21136/CMJ.2024.0433-23 | MR 4764537 | Zbl 07893396
[15] Müller, M.: Rings of quotients of generalized matrix rings. Commun. Algebra 15 (1987), 1991-2015. DOI 10.1080/00927878708823519 | MR 0909950 | Zbl 0629.16013
[16] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings. Algebras and Applications 1. Kluwer Academic, Dordrecht (2002). DOI 10.1007/978-94-010-0405-3 | MR 1896125 | Zbl 0997.20003
[17] Wang, Z., Chen, J.: Pseudo Drazin inverses in associative rings and Banach algebras. Linear Algebra Appl. 437 (2012), 1332-1345. DOI 10.1016/j.laa.2012.04.039 | MR 2942354 | Zbl 1262.47002
[18] Zhou, Y.: Generalizations of $UU$-rings, $UJ$-rings and $UNJ$-rings. J. Algebra Appl. 22 (2023), Article ID 2350102, 11 pages. DOI 10.1142/S0219498823501025 | MR 4556318 | Zbl 1522.16033
Partner of
EuDML logo