Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Hopf algebra; Lie $H$-pseudoalgebra; universal enveloping algebra; Rota-Baxter $H$-operator; annihilation algebra
Summary:
A Lie conformal algebra $L$ is defined as a $\mathbb {C}[\partial ]$-module ($\partial $ is an indeterminate), endowed with a $\mathbb {C}$-linear map $L\otimes L\rightarrow \mathbb {C}[\lambda ]\otimes L$, $a\otimes b\rightarrow [a_{\lambda }b]$ satisfying axioms similar to those of Lie algebra. Then Bakalov, D'Andrea and Kac introduced the notion of Lie $H$-pseudoalgebras by replacing the above polynomial algebra $\mathbb {C}[\partial ]$ with any cocommutative Hopf algebra $H$. We first classify solvable Lie $H$-pseudoalgebras of rank two. Then we consider the Rota-Baxter $H$-operators on such Lie $H$-pseudoalgebras. Finally, we study the relationship between Rota-Baxter $H$-operators on Lie $H$-pseudoalgebra and Rota-Baxter operators on its annihilation algebra.
References:
[1] Apel, J., Lassner, W.: An extension of Buchberger's algorithm and calculations in enveloping fields of Lie algebras. J. Symb. Comput. 6 (1988), 361-370. DOI 10.1016/S0747-7171(88)80053-1 | MR 0988423 | Zbl 0663.68044
[2] Bakalov, B., D'Andrea, A., Kac, V. G.: Theory of finite pseudoalgebras. Adv. Math. 162 (2001), 1-140. DOI 10.1006/aima.2001.1993 | MR 1849687 | Zbl 1001.16021
[3] Bakalov, B., D'Andrea, A., Kac, V. G.: Irreducible modules over finite simple Lie pseudoalgebras. I. Primitive pseudoalgebras of type $W$ and $S$. Adv. Math. 204 (2006), 278-346. DOI 10.1016/j.aim.2005.07.003 | MR 2233135 | Zbl 1104.17006
[4] Bakalov, B., D'Andrea, A., Kac, V. G.: Irreducible modules over finite simple Lie pseudoalgebras. II. Primitive pseudoalgebras of type $K$. Adv. Math. 232 (2013), 188-237. DOI 10.1016/j.aim.2012.09.012 | MR 2989981 | Zbl 1287.17051
[5] Bakalov, B., D'Andrea, A., Kac, V. G.: Irreducible modules over finite simple Lie pseudoalgebras. III. Primitive pseudoalgebras of type $H$. Adv. Math. 392 (2021), Article ID 107963, 81 pages. DOI 10.1016/j.aim.2021.107963 | MR 4312857 | Zbl 1511.17067
[6] Bakalov, B., Kac, V. G., Voronov, A. A.: Cohomology of conformal algebras. Commun. Math. Phys. 200 (1999), 561-598. DOI 10.1007/s002200050541 | MR 1675121 | Zbl 0959.17018
[7] Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10 (1960), 731-742. DOI 10.2140/pjm.1960.10.731 | MR 0119224 | Zbl 0095.12705
[8] Beilinson, A., Drinfeld, V.: Chiral Algebras. American Mathematical Society Colloquium Publications 51. AMS, Providence (2004). DOI 10.1090/coll/051 | MR 2058353 | Zbl 1138.17300
[9] Biswal, R., Chakhar, A., He, X.: Classification of rank two Lie conformal algebras. J. Ramanujan Math. Soc. 36 (2021), 203-219. MR 4328134 | Zbl 1518.17027
[10] Boyallian, C., Liberati, J. I.: On pseudo-bialgebras. J. Algebra 372 (2012), 1-34. DOI 10.1016/j.jalgebra.2012.08.009 | MR 2989998 | Zbl 1290.17017
[11] D'Andrea, A.: Irreducible modules over finite simple Lie pseudoalgebras. IV. Non-primitive pseudoalgebras. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 24 (2023), 97-140. DOI 10.2422/2036-2145.202109_003 | MR 4587742 | Zbl 1521.17089
[12] D'Andrea, A., Kac, V. G.: Structure theory of finite conformal algebras. Sel. Math., New Ser. 4 (1998), 377-418. DOI 10.1007/s000290050036 | MR 1654574 | Zbl 0918.17019
[13] Dixmier, J.: Enveloping Algebras. Graduate Studies in Mathematics 11. AMS, Providence (1996). DOI 10.1090/gsm/011 | MR 1393197 | Zbl 0867.17001
[14] Dorfman, I. Y.: Dirac structures and integrability of nonlinear evolution equations. Nonlinear Evolution Equations: Integrability and Spectral Methods John Wiley & Sons, Chichester (1993). MR 1237398 | Zbl 0717.58026
[15] Gai, B., Wang, S.: On Heisenberg-Virasoro pseudoalgebras. J. Math. Phys. 66 (2025), Article ID 021703, 18 pages. DOI 10.1063/5.0232329 | MR 4866340 | Zbl 07993787
[16] Gel'fand, I. M., Dorfman, I. Y.: Hamiltonian operators and infinite-dimensional Lie algebra. Funct. Anal. Appl. 15 (1981), 173-187. DOI 10.1007/BF01089922 | MR 0630337 | Zbl 0478.58013
[17] Gel'fand, I. M., Dorfman, I. Y.: Hamiltonian operators and the classical Yang-Baxter equation. Funct. Anal. Appl. 16 (1982), 241-248. DOI 10.1007/BF01077846 | MR 0684122 | Zbl 0527.58018
[18] Goodearl, K. R., Yakimov, M. T.: From quantum Ore extensions to quantum tori via noncommutative UFDs. Adv. Math. 300 (2016), 672-716. DOI 10.1016/j.aim.2016.03.029 | MR 3534843 | Zbl 1352.16037
[19] Guo, L.: An Introduction to Rota-Baxter Algebra. Surveys of Modern Mathematics 4. International Press, Beijing (2012). MR 3025028 | Zbl 1271.16001
[20] Kac, V. G.: Vertex Algebras for Beginners. University Lecture Series 10. AMS, Providence (1997). DOI 10.1090/ulect/010 | MR 1417941 | Zbl 0861.17017
[21] Lambek, J.: Deductive systems and categories. II. Standard constructions and closed categories. Category Theory, Homology Theory and their Applications. I Lecture Notes in Mathematics 86. Springer, Berlin (1969), 76-122. DOI 10.1007/BFb0079385 | MR 0242637 | Zbl 0198.33701
[22] Liu, L., Wang, S.: Rota-Baxter $H$-operators and pre-Lie $H$-pseudoalgebras over a cocommutative Hopf algebra $H$. Linear Multilinear Algebra 68 (2020), 2170-2184. DOI 10.1080/03081087.2019.1572710 | MR 4170203 | Zbl 1455.16028
[23] Lopes, S. A.: Noncommutative algebra and representation theory: Symmetry, structure & invariants. Commun. Math. 32 (2024), 63-117. DOI 10.46298/cm.11678 | MR 4683664 | Zbl 07900716
[24] Ma, T., Liu, L.: Rota-Baxter coalgebras and Rota-Baxter bialgebras. Linear Multilinear Algebra 64 (2016), 968-979. DOI 10.1080/03081087.2015.1068269 | MR 3479395 | Zbl 1355.16036
[25] Pei, J., Guo, L.: Averaging algebras, Schröder numbers, rooted trees and operads. J. Algebr. Comb. 42 (2015), 73-109. DOI 10.1007/s10801-014-0574-x | MR 3365594 | Zbl 1332.05153
[26] Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proc. Roy. Soc. Lond., Ser. A 451 (1995), 5-47. DOI 10.1098/rspa.1995.0118 | MR 1363190
[27] Rota, G.-C.: Baxter algebras and combinatorial identities. I. Bull. Amer. Math. Soc. 75 (1969), 325-329. DOI 10.1090/S0002-9904-1969-12156-7 | MR 0244070 | Zbl 0192.33801
[28] Rota, G.-C.: Baxter algebras and combinatorial identities. II. Bull. Amer. Math. Soc. 75 (1969), 330-334. DOI 10.1090/S0002-9904-1969-12158-0 | MR 0244070 | Zbl 0319.05008
[29] Sun, Q., Wu, Z.: Theory structure of $n$-Lie $H$-pseudoalgebras. J. Phys. A, Math. Theor. 43 (2010), Article ID 275201, 17 pages. DOI 10.1088/1751-8113/43/27/275201 | MR 2658278 | Zbl 1241.17005
[30] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series. W. A. Benjamin, New York (1969). MR 0252485 | Zbl 0194.32901
[31] Daele, A. Van: Multiplier Hopf algebras. Trans. Am. Math. Soc. 342 (1994), 917-932. DOI 10.1090/S0002-9947-1994-1220906-5 | MR 1220906 | Zbl 0809.16047
[32] Wu, Z. X.: Leibniz conformal algebras of rank two. Acta Math. Sin., Engl. Ser. 36 (2020), 109-120. DOI 10.1007/s10114-020-9057-2 | MR 4046995 | Zbl 1486.17005
Partner of
EuDML logo