Article
Keywords:
$n$-submodule; secondary module; functor; category
Summary:
We explore the existence of $ n $-submodules in the context of module theory. Then we generalize our results by considering an additive, left-exact functor $F$ defined on the category of modules, which is either covariant or contravariant, and preserves multiplications. Within this broader framework, we identify and characterize an $n$-submodule of $F(M)$, derived from the structure of $M$ and the action of the functor $F$.
References:
[1] Ahmadi, M., Moghaderi, J.:
$n$-submodules. Iran. J. Math. Sci. Inform. 17 (2022), 177-190.
MR 4411831 |
Zbl 1489.13016
[5] Macdonald, I. G.:
Secondary representation of modules over a commutative ring. Symposia Mathematica. Vol. XI Academic Press, London (1973), 23-43.
MR 0342506 |
Zbl 0271.13001