Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$n$-submodule; secondary module; functor; category
Summary:
We explore the existence of $ n $-submodules in the context of module theory. Then we generalize our results by considering an additive, left-exact functor $F$ defined on the category of modules, which is either covariant or contravariant, and preserves multiplications. Within this broader framework, we identify and characterize an $n$-submodule of $F(M)$, derived from the structure of $M$ and the action of the functor $F$.
References:
[1] Ahmadi, M., Moghaderi, J.: $n$-submodules. Iran. J. Math. Sci. Inform. 17 (2022), 177-190. MR 4411831 | Zbl 1489.13016
[2] Barnard, A.: Multiplication modules. J. Algebra 71 (1981), 174-178. DOI 10.1016/0021-8693(81)90112-5 | MR 0627431 | Zbl 0468.13011
[3] El-Bast, Z. A., Smith, P. F.: Multiplication modules. Commun. Algebra 16 (1988), 755-779. DOI 10.1080/00927878808823601 | MR 0932633 | Zbl 0642.13002
[4] Karimzadeh, S., Moghaderi, J.: On $n$-submodules and $G.n$-submodules. Czech. Math. J. 73 (2023), 245-262. DOI 10.21136/CMJ.2022.0094-22 | MR 4541100 | Zbl 07655766
[5] Macdonald, I. G.: Secondary representation of modules over a commutative ring. Symposia Mathematica. Vol. XI Academic Press, London (1973), 23-43. MR 0342506 | Zbl 0271.13001
[6] Pakyari, N., Nekooei, R., Rostami, E.: On secondary and representable modules over almost Dedekind domains. Commun. Algebra 48 (2020), 3891-3903. DOI 10.1080/00927872.2020.1750622 | MR 4124667 | Zbl 1446.13007
[7] Prest, M.: Definable Additive Categories: Purity and Model Theory. Memoirs of the American Mathematical Society 987. AMS, Providence (2011). DOI 10.1090/S0065-9266-2010-00593-3 | MR 2791358 | Zbl 1229.03034
[8] Rotman, J. J.: An Introduction to Homological Algebra. Universitext. Springer, Berlin (2009). DOI 10.1007/b98977 | MR 2455920 | Zbl 1157.18001
[9] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings. Filomat 31 (2017), 2933-2941. DOI 10.2298/FIL1710933T | MR 3639382 | Zbl 1488.13016
[10] Weibel, C. A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge (1994). DOI 10.1017/CBO9781139644136 | MR 1269324 | Zbl 0834.18001
Partner of
EuDML logo