Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
periodic element; semiclean element; 2-primal; polynomial ring
Summary:
We prove uniquely semiclean rings are reduced and hence Abelian. The semiclean elements of $R$, $R[x]$, and $M_n(R)$ are compared. In particular, we show that the indeterminate $x$ is never semiclean. The 2-primality of a ring $R$ is characterized via the semiclean elements of $R[x]$. We also consider the quasi-clean elements of a ring $R$ and compare them with the semiclean elements of $R$.
References:
[1] Abdi, M., Leroy, A.: Graphs of commutatively closed sets. Linear Multilinear Algebra 70 (2022), 6965-6977. DOI 10.1080/03081087.2021.1975621 | MR 4568594 | Zbl 1515.16033
[2] Camillo, V. P., Khurana, D.: A characterization of unit regular rings. Commun. Algebra 29 (2001), 2293-2295. DOI 10.1081/AGB-100002185 | MR 1837978 | Zbl 0992.16011
[3] Chacron, M.: On a theorem of Herstein. Can. J. Math. 21 (1969), 1348-1353. DOI 10.4153/CJM-1969-148-5 | MR 0262295 | Zbl 0213.04302
[4] Chen, H.: A note on potent elements. Kyungpook Math. J. 45 (2005), 519-526. MR 2205953 | Zbl 1118.16005
[5] Chen, H., Abdolyousefi, M. Sheibani: Theory of Clean Rings and Matrices. World Scientific, Singapore (2023). DOI 10.1142/12959 | MR 4544908 | Zbl 1523.16001
[6] Chen, W.: $P$-clean rings. Int. J. Math. Math. Sci. 2006 (2006), Article ID 75247, 7 pages. DOI 10.1155/IJMMS/2006/75247 | MR 2251642 | Zbl 1123.16021
[7] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. DOI 10.1016/j.jalgebra.2013.02.020 | MR 3037975 | Zbl 1296.16016
[8] Kanwar, P., Leroy, A., Matczuk, J.: Clean elements in polynomial rings. Noncommutative Rings and Their Applications Contemporary Mathematics 634. AMS, Providence (2015), 197-204. DOI 10.1090/conm/634 | MR 3307398 | Zbl 1326.16035
[9] Leroy, A., Matczuk, J.: Remarks on the Jacobson radical. Rings, Modules and Codes Contemporary Mathematics 727. AMS, Providence (2019), 269-276. DOI 10.1090/conm/727 | MR 3938155 | Zbl 1429.16014
[10] Ma, G., Leroy, A., Nasernejad, M.: Periodic and potent elements. (to appear) in J. Algebra Appl. DOI 10.1142/S0219498825503323
[11] McGovern, W. W.: The group ring $Z_(p)C_q$ and Ye's theorem. J. Algebra Appl. 17 (2018), Article ID 1850111, 5 pages \99999DOI99999 10.1142/S0219498818501116 \goodbreak. DOI 10.1142/S0219498818501116 | MR 3805722 | Zbl 1440.13103
[12] Nicholson, W. K.: Strongly clean rings and Fitting's lemma. Commun. Algebra 27 (1999), 3583-3592. DOI 10.1080/00927879908826649 | MR 1699586 | Zbl 0946.16007
[13] Ye, Y.: Semiclean rings. Commun. Algebra 31 (2003), 5609-5625. DOI 10.1081/AGB-120023977 | MR 2005247 | Zbl 1043.16015
Partner of
EuDML logo